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Abstract: We define an operator on the class A  of analytic functions in the unit disk 
{ :| | 1}z z= <U  involving the polylogarithms functions and introduce certain new subclasses of 

A using this operator. Some inclusion results, covering theorem, coefficients inequalities, and 
several other interesting properties of these classes are obtained. 
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INTRODUCTION 

Let A  denote the class of functions of the 
form: 

                    
2

( ) k
k

k
f z z a z

∞

=

= +∑                    (1) 

which are analytic in the unit disk 
{ :| | 1}z z= <U . For functions f given by (1) 

and 
2

( ) k
k

k
g z z b z

∞

=

= +∑ , let ( * )( )f g z denote 

the Hadamard product (or convolution) of 
( )f z and ( )g z , defined by 

2
( * )( ) k

k k
k

f g z z a b z
∞

=

= +∑ . And for the 

functions ( )f z and ( )g z  in A , we say that 
f is subordinate to g  in U , and write f gp , 
if there exists a Schwarz function w  in A  with 
| ( ) | 1w z <  and (0) 0w =  such that 

( ) ( ( ))f z g w z= in U . 
 

For  f ∈A , Sălăgean[9] has introduced the 
following operator called the Sălăgean operator: 
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1
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D f z f z
D f z Df z zf z
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=
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Note that  

2
( ) ,n n k

k
k

D f z z k a z
∞

=

= +∑
0( {0})n ∈ = UN N . 

 

Let f ∈A . Denote by :D λ →A A , the 
operator defined by: 

1( ) * ( ) ( 1)
(1 )

zD f z f z
z

λ
λ λ+= > −

−
. 

It is obvious that 0 ( ) ( )D f z f z= , 
1 ( ) '( )D f z zf z=  and 

 
1 ( )

0
( ( ))( ) , ( )

!
z z f zD f z

δ δ
δ δ

δ

−
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Note that 
2

( ) ( , ) ,k
k

k
D f z z C k a zδ δ

∞

=

= +∑  

where  
1

( , )
k

C k
δ

δ
δ
+ − 

=  
 

 and  0δ ∈N . 

 
The operator D fδ  is called the Ruscheweyh 
derivative operator[8]. 

 
Finally, let P  denote the class of functions 

of the form 2
1 2( ) 1p z p z p z= + + + ⋅⋅ ⋅  analytic 

in U  which satisfy the condition Re{ ( )} 0p z > .  
 
We recall here the definition of the well-

known generalization of the polylogarithm 
function ( ;  )G n z  given by 

 

   1
( ;  )  ( , ).

k

n
k

zG n z n z
k

∞

=

= ∈ ∈∑ � U            (2) 

 
We note that 2(-1;  ) (1- )G z z z= is Koebe 

function. For more about polylogarithms in 
theory of univalent functions see Ponnusamy 
and Sabapathy[7]  and Ponnusamy[6] . 
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We now introduce a function 
(-1)( ( ;  ))G n z given by  

(-1)  
1( ;  ) *  ( ( ;  )) ,

(1- )
zG n z G n z
z λ+=         

( 1, )nλ > − ∈�                                               (3) 
and obtain the following linear operator 

      (-1) ( ) = ( ( ;  )) *  ( ).n f z G n z f zλD               (4) 

Now we find the explicit form of the 
function (-1)( ( ;  ))G n z . It is well known that for 

1λ > − we have: 
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Putting (3) and (5) in (4), we get: 
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Therefore the function (-1)( ( ;  ))G n z has the 

following form 
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( 1)!( ( ;  )) ( ).
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For  0,n λ ∈N , we note that  
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( 1)!( ) ( ).
!( 1)!
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λ

λ

∞

=

+ −
= + ∈

−∑ UnD

     (6) 
Note that 0

nD≡nD  and 0 D δ
λ ≡D which are 

Sălăgean and Ruscheweyh derivative operators , 
respectively[9,8] . It is clear that the operator n

λD  
included two known derivative operators. Also 
note that 0

0 ( ) ( )f z f z=D  and 
1 0
0 1( ) ( ) '( )f z f z zf z= =D D . 

 
Definition 1:  Let ( ( ))nK zλ φ  be the class of 
functions f ∈A  for which 
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Definition 2: Le ( ) (1 (1 2 ) ) (1 )z z zφ α= + − − , 
then ( ) ( )n nK Rλ λφ α≡ be the class of functions 
f ∈A  for which  
 

           
0

( ( )) '
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z f z
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n z
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> 

 
∈ ≤ < ∈N U

D
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Note that 0 *
0 ( ) ( )K Sφ φ≡ were introduced 

and studied by Ma and 
Minda[5],

0 ( ) ( )R Rλ λα α≡ were studied by 
Ahuja[1] and 0 ( ) ( )n

nR Rα α≡  were studied by 
Kadioğlu[4]. Also for different choices of  ,n λ ¸ 
and φ , we obtain several subclasses of analytic 
functions investigated earlier by other authors. 

Let T denote the subclass of A  consisting 
of the functions that can be expressed in the 
form 

               
2

( ) | | k
k

k
f z z a z

∞

=

= −∑ .                    (9) 

Finally, we defined the class 
( ) ( )n nRλ λα α= IM T . Note that 
( ) ( )n nRλ λα α⊂M . 

 
In this paper, we investigate several 

inclusion properties for the classes 
( ( ))nK zλ φ associated with the operator n

λD . 
Some applications involving operator are also 
obtained. Also, we derive several interesting 
properties of functions belonging to the 

( )n
λ αM  consisting of analytic and univalent 

functions with negative coefficients. Coefficient 
inequalities, distortion theorems and result on 
integral operators are also given. 
 

THE CLASSES ( ( ))nK zλ φ  
 

To derive our first theorem, we need the 
following lemma due to Eenigenburg et al.[3]. 
 
Lemma 1: Let  ,β ν be complex numbers. Let 

Pφ ∈ be convex univalent in U  with 
(0) 1φ = and Re[ ( ) ] 0zβφ ν+ > , z ∈U . 

If 2
1 2( ) 1p z p z p z= + + + ⋅⋅ ⋅  is analytic in U  

with (0) 1p = , then  
 

'( )( ) ( ) ( ) ( ), ( ).
( )

zp zp z z p z z z
z

φ φ
βφ ν

+ ⇒ ∈
+

p p U

 

Theorem 1: Let 0,n λ ∈N and Pφ ∈ . Then 

1( ) ( ).n nK Kλ λφ φ+ ⊂  
 

Proof: Let  1( )nf K λ φ+∈  and set  

                     
( ( )) '

( )
( )

n

n

z f z
p z

f z
λ

λ

=
D

D
                (10) 

 
where ( )p z  analytic in U  with (0) 1p = . 

One can easily verify the identity 
 

1( ( )) ' ( 1) ( ) ( )n n nz f z f z f zλ λ λλ λ+= + −D D D . 
                 (11) 
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By using (11) in (10), we get 
 

               1 ( )
( 1) ( )

( )

n

n

f z p z
f z

λ

λ

λ λ++ = +
D

D
.        (12) 

Taking the logarithmic differentiation on 
both sides of (12) and multiplying by z , we 
have 

1

1

( ( )) ' '( )( ) ( ).
( )( )

n

n

z f z zp zp z z
p zf z

λ

λ λ
+

+

= + ∈
+

UD

D
 (13) 

 
Applying Lemma 1 to (13), it follows that 

p φp , that is ( )nf K λ φ∈ . Therefore, we 
complete the proof of Theorem 1. 
 
Corollary 1: Let 0,n λ ∈N and Pφ ∈ . Then 

1
1 ( ) ( ).n nK Kλ λφ φ+
+ ⊂  

 
Theorem 2:  Let the function  ( )nf K λ φ∈  and 
let c be real number such 1c > − , then the 
function F defined by 
 

                1

0

1( ) ( )
z

c
c

cF z t f t dt
z

−+
= ∫               (14) 

belongs to the class 1( )nK λ φ+ . 
 
Proof: Let 1( )nf K λ φ+∈ . Then 

             1

1

( ( )) '
( )
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z F z
z

F z
λ

λ
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+

p
D

D
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Set 
( ( )) '

( )
( )

n
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z F z
p z

F z
λ

λ

=
D

D
. 

From the representation of ( )F z , it follows 
that 

( ( )) ' ( 1) ( ) ( )n n nz F z c f z c F zλ λ λ= + −D D D . 
By using the same technique as in the proof 

of Theorem 1, we get 
 

        
( ( )) ' '( )( )

( )( )

n

n

z f z zp zp z
p z cf z

λ

λ

= +
+

D

D
.      (16) 

By applying Lemma 1 we obtain the 
required result. 
 

THE CLASSES ( )n
λ αM  

 
First, we provide a sufficient condition for a 

function f analytic in U to be in ( )n
λ αM . 

 
Coefficient estimates: 

Theorem 3:  Let the function f be defined by 
(9) . Then ( )nf λ α∈M if and only if 
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where 0,n λ ∈N and 
1
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λ
λ
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. 

Proof: Assume that the inequality (17) holds 
true and | | 1z = . Then we obtain  
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This show that the values of 
( ( )) '

( )

n

n

z f z
f z
λ

λ

D

D
lies in a circle centered at 

 1w = whose radius 1  whose radius 1 α− . 
Hence f satisfies the condition (17).  

Conversely, we assume that the function f   
defined by (9) is in the class ( )n

λ αM . Then 
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                 (18) 
 

For z ∈U , we choose values of z on the 

real axis so that ( ( )) '
( )

n

n

z f z
f z
λ

λ

D

D
is real.  

Upon clearing the denominator in (18) and 
letting 1z −→  through real values, we obtain 

 
1

2 2
1 ( , ) | | 1 ( , ) | |n n

k k
k k

k C k a k C k aλ α λ
∞ ∞

+

= =

 
− ≥ − 

 
∑ ∑

which gives (17). 
Finally the result is sharp with the extremal 

function  f  given by 
 

             
0

1( ) ,
( ) ( , )

( , ;0 1; 2).

k
nf z z z

k k C k
n k

α
α λ

λ α

−
= −

−
∈ ≤ < ≥N

            (20) 

 
Corollary 2: Let the function f  defined by (9) 
be in the class ( )n

λ αM . Then we have 
 

0
1 ( , ;0 1; 2).

( ) ( , )k na n k
k k C k

α λ α
α λ

−
≤ ∈ ≤ < ≥

−
N

 (21) 
This equality is attained for the function 

f given by (20). 
 



J. Math. & Stat., 4(1): 46-50, 2008 
 

49 
 

Distortion theorem: 

A distortion property for function f  to be in 
the class ( )n

λ αM given as follows: 
 
Theorem 4:  Let the function f  defined by (9) 
be in the class ( )n

λ αM . Then for | |z r= we 
have 
 

2 21 1| ( ) | ,
(2 )2 ( 1) (2 )2 ( 1)n nr r f z r rα α

α λ α λ
− −

− ≤ ≤ +
− + − +

 

(22) 
and  
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1 11 | '( ) | .
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Proof:  In view of Theorem 4, we have 
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In the same way we have 
 

1 1

1 11 | '( ) | .
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This completes the proof of the theorem. 

The above bounds are sharp. Equalities are 
attended for the following function 

 
21( ) , .

(2 )2 ( 1)nf z z z z rα
α λ
−

= − = ±
− +

  (23) 

Corollary 3: The disk | | 1z <  is mapped onto a 
domain that contains the disk  
 

1| | 1
(2 )2 ( 1)nw α

α λ
−

< −
− +

. 

The result is sharp with extremal function (23). 
 
Proof: The result follows upon letting 1r → in 
(22). 
 
Integral Operator: 
 
Bernardi[5] introduced integral operator defined 
as follows: 
 

Let f ∈A  and 1c > − .Then, for z ∈U  
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Now we consider our results. 

 
Theorem 5:  Let the function f defined by (9) 
be in the class ( )n

λ αM  and let c  be real 
number such that 1c > − , then the function 
F defined by 
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Proof:  From the representation of ( )F z , it 
follows that 
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Since ( )nf λ α∈M and hence by Theorem 5, 

( )nF λ α∈M . 
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