Journal of Mathematics and Statistics 3 (4): 207-210, 2007 ISSN 1549-3644 © 2007 Science Publications

On a Class of Nonhomogeneous Fields in Hilbert Space

Raéd Hatamleh

Department of Mathematics, Irbid National University, Irbid-Jordan

Abstract: Two-parametric semigroups of operators in Hilbert space with bounded infinitesimal doubly commuting operators are studied. The characteristics describing deviation of a semigroup from unitary one, when infinitesimal operators are unitary, in particular, nonunitary index, have been introduced. Necessary and sufficient conditions for nonunitary index finiteness have been obtained.

Keywords: Nonhomogeneous Fields, Multi-parametric Semigroup, Doubly Commuting Operators

INTRODUCTION

One-parametric semigroups of operators were studied adequately, both from theoretical and applied pointviews [1], A few works in harmonic analysis are devoted to study multi-parametric semigroups $[2, 3]$. We study the nonhomogeneous field $u(x_1, x_2)$ in Hilbert space *H* which is presented in the form

$$
u(x_1, x_2) = e^{ix_1T_1 + ix_2T_2}u_0,
$$

where $u_0 \in H$, T_1 and T_2 are bounded doubly commuting operators [4]. Consider a scalar product

$$
\langle u(x_1, x_2), u(y_1, y_2) \rangle_H = K(x_1, y_1; x_2, y_2).
$$

Then if $T_j = T_j^*(j = 1,2)$, the function differences $K(x_1 - y_1; x_2 - y_2)$ and the field is $K(x_1, y_1; x_2, y_2)$ depends only on corresponding homogenous.

 T_j ($j = 1, 2$) are non self-adjoint operators, then the T_j ($j = 1, 2$) belongs to a certain class of non self-If $T_1 \neq T_1^*$ or $T_2 \neq T_2^*$ or both operators field $u(x_1, x_2)$ is nonhomogeneous. In addition, if adjoint operators, one may invoke spectral theory of doubly commuting non self-adjoint operators to study the field $u(x_1, x_2)$.

Field: Consider the case when T_j ($j = 1, 2$) are doubly **Functional Characteristic of the Nonhomogeneous** commuting unitary or quasi-unitary operators and introduce some numerical and functional

characteristics, describing deviation of the field in the form

$$
u(x_1, x_2) = e^{ix_1T_1+ix_2T_2}u_0,
$$

where T_i are unitary operators. Note that for unitary doubly commuting operators (we call the corresponding field to be unitary) function $K(x_1, y_1; x_2, y_2)$ may be presented in the form

$$
K(x_1 - y_1; x_2 - y_2; x_1 + y_1; x_2 + y_2) =
$$

$$
\int_{0}^{2\pi} e^{i(x_1 - y_1)\cos f_1(\lambda) + i(x_2 - y_2)\cos f_2(\lambda)}
$$
 (1)

$$
\times e^{-(x_1+y_1)\sin f_1(\lambda)-(x_2+y_2)\sin f_2(\lambda)} dF_{\lambda},
$$

where, $f_k(\lambda)$ real-value functions,

$$
\Delta F_{\lambda} = \langle \Delta E_{\lambda} u_{0}, u_{0} \rangle,
$$

and E_{λ} is the spectral function of unitary operator 2π

$$
T_0=\int\limits_0 e^{i\lambda}dE_\lambda.
$$

The above form of *K* follows from the Neuman theorem for generating operator T_0 of a set of mutually commuting selfadjoint (unitary) operators ^[5].

 Taking into the account the well-known fact for commuting operators T_1 and T_2 one of them is a function of another $[5]$. It is not difficult to verify that if T_1 and T_2 are the unitary commutative operators then the function $K(x_1, y_1; x_2, y_2)$ satisfies the following equation

$$
L_{x_j y_j} K(x_1, y_1; x_2, y_2) = 0, \t(j = 1, 2) \t(2)
$$

where

$$
L_{xy} = I - \frac{\partial^2}{\partial x \, \partial y}.
$$

From the applied point of view $K(x_1, y_1; x_2, y_2)$ is the correlation function for some random field, because $K(x_1, y_1; x_2, y_2)$ is Hermitian nonnegative function. Hence there exists Gaussian normal field for which $K(x_1, y_1; x_2, y_2)$ is the correlation function and the results obtained may be interpreted as a correlation theory for nonhomogeneous random field. Here after we will consider that

$$
H = H_u = \frac{1}{x_1 x_2 \ge 0} T^{x_1} T^{x_2} u_0, \ \ (x_j \text{ are integers}).
$$

Let us consider the field

$$
u^*(x_1, x_2) = e^{ix_1T_1^*+ix_2T_2^*}u_0,
$$

which, henceforth, we will call it the adjoint field.

It is obvious that for the field $e^{-ix_1T_1+ix_2T_2}u_0$ (T_1 and T_2 double commuting operators) to be unitary it is necessary and sufficient that *K* should be in accordance with $e^{-ix_1T_1+ix_2T_2}u_0(T_1)$

$$
L_{x_jy_j}K(x_1, y_1; x_2, y_2) = 0, \t(j = 1, 2)
$$

Lemma 1: Let $H_u = H_u^* = H$, and $u(x_1, x_2) = e^{ix_1T_1 + ix_2T_2}u_0$. Then the necessary and sufficient for $T_{\overline{1}}$ and $\overline{T}_{\overline{2}}$ to be commutative is that

$$
\frac{\partial^2}{\partial x_1 \partial y_2} \widetilde{K}(x_1, y_1; x_2, y_2) =
$$
\n
$$
\frac{\partial^2}{\partial x_2 \partial y_1} \widetilde{K}(x_1, y_1; x_2, y_2),
$$
\nwhere\n
$$
\widetilde{K}(x_1, y_1; x_2, y_2) = \langle u(x_1, x_2), u^*(y_1, y_2) \rangle.
$$

 The lemma proof follows from the definition of the function, $\widetilde{K}(x_1, y_1; x_2, y_2)$ and a relationship

$$
\frac{\partial^2 \widetilde{K}}{\partial x_{\ell} \partial y_m} = -\langle T_{\ell} T_m u(x_1, x_2), u^*(y_1, y_2) \rangle.
$$

If $L_{x_1y_1}L_{x_2y_2}K(x_1, y_1; x_2, y_2) \neq 0$, then the function

$$
W(x_1, y_1; x_2, y_2) = L_{x_1y_1}L_{x_2y_2}K(x_1, y_1; x_2, y_2)
$$
 (3)

may be considered as a functional characteristic of deviation infinitesimal commutative operators T_1 and T_2 from unitary operators.

If T_1 and T_2 are doubly commuting operators $(([T_1, T_2] = 0, [T_1, T_2^*] = 0)$, then from (3) we may obtained the following presentations for *W*:

$$
W(x_1, y_1; x_2, y_2) =
$$

\n
$$
\langle (I - T_1^* T_1)(I - T_2^* T_2)u(x_1, x_2), u(y_1, y_2) \rangle.
$$
 (4)

The presentation (4) is significant for further studies.

Remark 1: *To reconstruct* $K(x_1, y_1; x_2, y_2)$ by $W(x_1, y_1; x_2, y_2)$ one may solve Darboux-Goursat *problem for equation* $L_{x_1y_1}L_{x_2y_2}K(x_1, y_1; x_2, y_2) = W(x_1, y_1; x_2, y_2)$

twice, and defining appropriate conditions additionally.

Remark 2: *If the operators* T_1 *and* T_2 *are commuting operators, but are not doubly commuting, then* $W(x_1, y_1; x_2, y_2) =$ $(I - T_1^*T_1 - T_2^*T_2 + T_2^*T_1^*T_1T_2)u(x_1, x_2),$

$$
u(y_1, y_2)
$$

and further analysis is based on assumption of commutant $[T_1, T_2^*]$ *properties, for example* T_1, T_2^* *and* $[T_1, T_2^*]$ *form Lie algebra.*

Theorem 1: *If dim* $H_0 = r < \infty$ *, where* $H_0 = \overline{(I - T_1^*T_1)}H \cap \overline{(I - T_2^*T_2)}H$ *then* 1, y_1, x_2, y_2 / $-\sum_{\alpha=1}^{\infty}$ $\frac{\mu_{\alpha} \Psi_{\alpha}(x_1, x_2) \Psi_{\alpha}(y_1, y_2)}{\alpha}$ $W(x_1, y_1; x_2, y_2) = \sum_{r}^{r} \lambda_{\alpha} \Phi_{\alpha}(x_1, x_2) \overline{\Phi_{\alpha}(y_1, y_2)},$ = $\sum_{\alpha=1} \lambda_{\alpha} \Phi_{\alpha}(x_1, x_2) \overline{\Phi_{\alpha}(y_1, y_2)},$ (5)

α

where
$$
\Phi_{\alpha}(x_1, x_2) = \langle u(x_1, x_2), h_{\alpha} \rangle
$$
, $h_{\alpha} \in H_0$,
and λ_{α} are real numbers.

Proof: Consider the orthonormal basis $\{h_{\alpha}\}_{\alpha=1}^{r}$ in H_0 , consisting of eigenvector contraction of self-adjoinet operator $(I - T_1^*T_1)(I - T_2^*T_2)$ onto its invariant subspace H_0 . Since

$$
B_{H} = (I - T_{1}^{*}T_{1})(I - T_{2}^{*}T_{2})u(x_{1}, x_{2})
$$

=
$$
\sum_{\alpha=1}^{r} \langle Bu(x_{1}, x_{2}), h_{\alpha} \rangle h_{\alpha}
$$

=
$$
\sum_{\alpha=1}^{r} \langle u(x_{1}, x_{2}), Bh_{\alpha} \rangle h_{\alpha}
$$

=
$$
\sum_{\alpha=1}^{r} \lambda_{\alpha} \langle u(x_{1}, x_{2}), h_{\alpha} \rangle h_{\alpha},
$$

where $Bh_{\alpha} = \lambda_{\alpha} h_{\alpha}$ and λ_{α} are eigenvalues of the operator *B*.

 As a result, we obtain $W(x_1, y_1; x_2, y_2) =$ $1, \lambda$ 2) \mathbf{P}_{α} (y 1, y 2) 1 $(x_1, x_2) \Phi_{\alpha}(y_1, y_2)$. *r* $\Phi_{\alpha}(x_1, x_2) \Phi_{\alpha}(y_1, y_2)$ α λ $\sum_{\alpha=1} \lambda_{\alpha} \Phi_{\alpha}(x_1, x_2) \overline{\Phi_{\alpha}(y_1, y_2)}$.

Remark, that the function $K(x_1, y_1; x_2, y_2)$ defines the Hilbert-valued function $u(x_1, x_2)$ quite completely. The next assertion is valid.

Lemma 2: *Consider the two functions* $u_1(x_1, x_2)$ *and* $u_2(x_1, x_2)$ with values belonging to the Hilbert spaces $1 - 2$ $u_j = \bigvee_{x_1, x_2 \geq 0} u_j(x_1, x_2)$ $H_{ui} = \sqrt{u_i(x)}$ $=\overline{\bigvee_{x_1,x_2\geq 0} u_j(x_1,x_2)}$ respectively, where the

scalar product is generated by the respective function

$$
K(x_1, y_1; x_2, y_2) = \langle u_j(x_1, x_2), u_j(y_1, y_2) \rangle_{H_j}
$$

= $K_j(x_1, y_1; x_2, y_2)$.
If $K_1(x_1, y_1; x_2, y_2) = K_2(x_1, y_1; x_2, y_2)$, then
there exists a unitary transformation $U \in [H_1, H_2]$
such that $u_2(x_1, x_2) = Uu_1(x_1, x_2)$. Moreover if
 $u(x_1, x_2) = e^{ix_jT_1 + ix_jT_2}u_{0_j}$, then $u_2(x_1, x_2)$ is also

generated by two-parametric semigroup of operators $u_2(x_1, x_2) = e^{ix_1B_1+ix_2B_2}u_{0_2}.$

Proof: Consider lineals

$$
L_j = \left\{ \sum_{\alpha,\beta=1}^{n_1, n_2} C_{\alpha,\beta} u_j (x_\alpha, x_\beta) \right\} n_1, n_2 < \infty,
$$

where, $C_{\alpha \beta}$ are complex numbers. For $h_1^{(j)}$, $h_2^{(j)} \in L_j$ define binary form

$$
\langle h_1^{(j)}, h_2^{(j)} \rangle_{L_j} =
$$
\n
$$
\sum_{\alpha,\beta=1}^{n_1, n_2} \sum_{p,q=1}^{m_1, m_2} C_{\alpha,\beta} Q_{p,q} K_j(x_\alpha, y_p; x_\beta, y_q),
$$
\nwhere,
\n
$$
h_1^{(j)} = \sum_{\alpha,\beta=1}^{n_1, n_2} C_{\alpha,\beta} u_j(x_\alpha, x_\beta),
$$

$$
h_2^{(j)} = \sum_{p,q=1}^{m_1,m_2} Q_{p,q} u_j(x_p, x_q).
$$

Then L_i become pre-Hilbert spaces. Define isometric (by virtue of equality $K_1(x_1, y_1; x_2, y_2) = K_2(x_1, y_1; x_2, y_2)$, transformation of L_1 into L_2 :

$$
U\left(\sum_{\alpha,\beta=1}^{n_1,n_2} C_{\alpha,\beta} u_1(x_\alpha,x_\beta)\right)
$$

=
$$
\left(\sum_{\alpha,\beta=1}^{n_1,n_2} C_{\alpha,\beta} u_2(x_\alpha,x_\beta)\right).
$$

Extending U for closures L_1 and L_2 we get the first assertion of the Lemma. The second part of the Lemma follows immediately from the evident relationships:

$$
u_2(x_1, x_2) = Uu_1(x_1, x_2) =
$$

\n
$$
Ue^{ix_1T_1+ix_2T_2}u_{0_1} = e^{ix_1B_1+ix_2B_2}u_{0_2},
$$

\nwhere $B_j = UT_jU^{-1}, u_{0_2} = Uu_{0_1}.$

Nonunitary index: Let us now define a numerical characteristic for the field deviation from the unitary field. Let us call the nonunitary index the maximal rank of quadratic forms

$$
\sum_{\ell,m=1}^n W\left(x_1^{(\ell)},y_1^{(\ell)};x_2^{(m)},y_2^{(m)}\right)Z_{\ell}\overline{Z}_m, n \leq \infty.
$$

For the unitary field a nonunitary property coefficient is equal to 0, since $W(x_1, y_1; x_2, y_2) = 0$.

Theorem 2: In order that the field $u(x_1, x_2) = e^{ix_1T_1+ix_2T_2}u_0$, has a finite nonunitary index it is necessary and sufficiently that dim $H_0 = r < \infty$, where T_1 and T_2 are doubly commuting operators and

$$
u_0 \in H_0 = (I - T_1^*T_1)H \cap (I - T_2^*T_2)H.
$$

Proof:

Sufficiency: When dim $H_0 = r < \infty$, there exists representation (5) for $W(x_1, y_1; x_2, y_2)$ and

$$
\sum_{\ell,m=1}^n W\left(x_1^{(\ell)},y_1^{(\ell)};x_2^{(m)},y_2^{(m)}\right)Z_{\ell}\overline{Z}_m = \sum_{\nu=1}^r \lambda_{\nu} |\zeta_{\nu}|^2,
$$

where $\zeta_{v} = \sum \Phi_{v} \left(x_{1}^{(\ell)}, x_{2}^{(\ell)} \right)$ 1 , $\zeta_v = \sum \Phi_v (x_1^{(\ell)}, x_2^{(\ell)})Z$ $=\sum_{\ell=1}^{\infty} \Phi_{\nu} \left(x_1^{(\ell)}, x_2^{(\ell)}\right) Z_{\ell}$ ℓ . It follows that

the rank of quadratic form does not exceed *r*.

Necessity: Let us consider the sequence of pares of real numbers

$$
x_{\ell} = (x_1^{(\ell)}, x_2^{(\ell)}), (\ell = \overline{1, n}).
$$

Then

$$
\sum_{\ell,m=1}^{n} W(x_{\ell}, x_m) Z_{\ell} \overline{Z}_{m} = \langle (I - T_1^* T_1)(I - T_2^* T_2)h, h \rangle
$$

where $h = \sum_{\ell=1}^{n} Z_{\ell} u(x_1^{(\ell)}, x_2^{(\ell)}).$

Let

$$
H_{n} = \left\{ h : h = \sum_{\ell=1}^{n} Z_{\ell} u \left(x_{1}^{(\ell)}, x_{2}^{(\ell)} \right) \right\}, \ H_{n} \subset H_{u}.
$$

 $G_n = P_n (I - T_1^* T_1)(I - T_2^* T_2) P_n H_u$, where P_n is Consider the subspace the projection operator onto subspace H_n . It is obvious that $G_n \subseteq P_n H_0$ and the rank of form

 $,m=1$ $(x_{\scriptscriptstyle f}, x_{\scriptscriptstyle m})$ *n* $_{m}$) L _l L m *m* $W(x_i, x_m)Z/Z$ $\sum_{\ell,m=1} W(x_{\ell},x_m) Z_{\ell}$ is equal to $\dim G_n$. It is

evident that $H_1 \subset H_2 \subset \ldots \subset H_n \subset \ldots$ and $\lim_{n \to \infty} P_n = I$, hence rank $W > dim G_n$ and

 $dim H_0 \leq r$. rank $W \ge \lim_{n \to \infty} G_n = \dim H_0$. This implies that rank

Similarly one may prove the next theorem.

Theorem 3: *In order that the field* $u(x_1, x_2) = e^{ix_1T_1+ix_2T_2}u_0$

has a finite nonunitary index it is necessary and sufficient that the subspaces

$$
H_0^{(j)} = \overline{(I - T_j^*T_j)H} \quad (j = 1, 2)
$$

be finite-dimensional where, $u_0 \in H$, T_i are doubly commuting operators.

 Further development of suggested approach is related to the spectral theory for the doubly commuting contraction systems and their triangular and universal models^[6]. Thus, one may derive canonical representation for $W(x_1, y_1; x_2, y_2)$ and perform harmonic analysis of two-parametric semigroups $e^{ix_1T_1+ix_2T_2}$ when T_1 *and* T_2 are doubly commuting contractions.

REFERENCES

- 1. Hille, E., Phillips, R.S., 1957. Functional Analysis and Semi-Groups, Providence, 829.
- 2. Livčic, Moshe S.,Waksman, Leonid L., 1987. Commuting Nonself-adjoint Operator in Hilbert Space, Lect Notes Math, #1272, ed. Coic and E.Ecumann, 115.
- 3. Livčic, M. S., Kravitsky, N., Markus, A., Vinnikov, V., 1995. Theory of Commuting Nonself-adjoint Operators, Kluver academic publ., Dordrent - London, 332.
- 4. Zolotarev, V., 1997. Functional Models for Algebras of Linear Nonself-adjoint Operators, Zeit fur Ang. Math and Mech., 77(2): 695-696.
- 5. Riesz, F., Sz.-Nagy, B., 1972. Lessons D'Analyse Fonctionnelle, Akademiani Kiodo, Budapest, 587.
- 6. Zolotarev, V.,1976. Triangular Models of Systems of Doubly Commuting Operators (Russian), Akad. Nauk Armjan SSR Dokl 63,136-140 (Reviewer J.L. Looper) 47A 45.