Journal of Mathematics and Statistics 3 (4): 207-210, 2007 ISSN 1549-3644 © 2007 Science Publications

On a Class of Nonhomogeneous Fields in Hilbert Space

Raéd Hatamleh

Department of Mathematics, Irbid National University, Irbid-Jordan

Abstract: Two-parametric semigroups of operators in Hilbert space with bounded infinitesimal doubly commuting operators are studied. The characteristics describing deviation of a semigroup from unitary one, when infinitesimal operators are unitary, in particular, nonunitary index, have been introduced. Necessary and sufficient conditions for nonunitary index finiteness have been obtained.

Keywords: Nonhomogeneous Fields, Multi-parametric Semigroup, Doubly Commuting Operators

INTRODUCTION

One-parametric semigroups of operators were studied adequately, both from theoretical and applied pointviews ^[1], A few works in harmonic analysis are devoted to study multi-parametric semigroups ^[2, 3]. We study the nonhomogeneous field $u(x_1, x_2)$ in Hilbert space *H* which is presented in the form

$$u(x_1, x_2) = e^{ix_1T_1 + ix_2T_2}u_0,$$

where $u_0 \in H$, T_1 and T_2 are bounded doubly commuting operators^[4]. Consider a scalar product

$$\langle u(x_1, x_2), u(y_1, y_2) \rangle_H = K(x_1, y_1; x_2, y_2)$$

Then if $T_j = T_j^*(j = 1, 2)$, the function $K(x_1, y_1; x_2, y_2)$ depends only on corresponding differences $K(x_1 - y_1; x_2 - y_2)$ and the field is homogenous.

If $T_1 \neq T_1^*$ or $T_2 \neq T_2^*$ or both operators $T_j (j = 1, 2)$ are non self-adjoint operators, then the field $u(x_1, x_2)$ is nonhomogeneous. In addition, if $T_j (j = 1, 2)$ belongs to a certain class of non self-adjoint operators, one may invoke spectral theory of doubly commuting non self-adjoint operators to study the field $u(x_1, x_2)$.

Functional Characteristic of the Nonhomogeneous Field: Consider the case when T_j (j = 1, 2) are doubly commuting unitary or quasi-unitary operators and introduce some numerical and functional characteristics, describing deviation of the field in the form

$$u(x_1, x_2) = e^{ix_1T_1 + ix_2T_2}u_0$$

where T_j are unitary operators. Note that for unitary doubly commuting operators (we call the corresponding field to be unitary) function $K(x_1, y_1; x_2, y_2)$ may be presented in the form

$$K (x_{1} - y_{1}; x_{2} - y_{2}; x_{1} + y_{1}; x_{2} + y_{2}) = \int_{0}^{2\pi} e^{i(x_{1} - y_{1})\cos f_{1}(\lambda) + i(x_{2} - y_{2})\cos f_{2}(\lambda)}$$
(1)
$$\times e^{-(x_{1} + y_{1})\sin f_{1}(\lambda) - (x_{2} + y_{2})\sin f_{2}(\lambda)} dF$$

$$\times e$$
 f_{λ} ,

where, $f_k(\lambda)$ real-value functions, $\Delta F_{\lambda} = \langle \Delta E_{\lambda} u_0, u_0 \rangle$,

and E_{λ} is the spectral function of unitary operator $\frac{2\pi}{2\pi}$

$$T_0 = \int_0 e^{i\lambda} dE_{\lambda}.$$

The above form of K follows from the Neuman theorem for generating operator T_0 of a set of mutually commuting selfadjoint (unitary) operators ^[5].

Taking into the account the well-known fact for commuting operators T_1 and T_2 one of them is a function of another ^[5]. It is not difficult to verify that if T_1 and T_2 are the unitary commutative operators then the function $K(x_1, y_1; x_2, y_2)$ satisfies the following equation

$$L_{x_j y_j} K(x_1, y_1; x_2, y_2) = 0,$$
 $(j = 1, 2)$ (2)

where

$$L_{xy} = I - \frac{\partial^2}{\partial x \, \partial y}$$

From the applied point of view $K(x_1, y_1; x_2, y_2)$ is the correlation function for some random field, because $K(x_1, y_1; x_2, y_2)$ is Hermitian nonnegative function. Hence there exists Gaussian normal field for which $K(x_1, y_1; x_2, y_2)$ is the correlation function and the results obtained may be interpreted as a correlation theory for nonhomogeneous random field. Here after we will consider that

$$H = H_u = \overline{\bigvee_{x_1, x_2 \ge 0} T^{x_1} T^{x_2} u_0}, \quad (x_j \text{ are integers}).$$

Let us consider the field

$$u^{*}(x_{1}, x_{2}) = e^{ix_{1}T_{1}^{*} + ix_{2}T_{2}^{*}}u_{0},$$

which, henceforth, we will call it the adjoint field.

It is obvious that for the field $e^{-ix_1T_1+ix_2T_2}u_0$ (T_1 and T_2 double commuting operators) to be unitary it is necessary and sufficient that K should be in accordance with

$$L_{x_j y_j} K(x_1, y_1; x_2, y_2) = 0,$$
 (j = 1, 2)

Lemma 1: Let $H_u = H_u^* = H$, and $u(x_1, x_2) = e^{ix_1T_1 + ix_2T_2}u_0$. Then the necessary and sufficient for T_1 and T_2 to be commutative is that

$$\frac{\partial^2}{\partial x_1 \partial y_2} \widetilde{K}(x_1, y_1; x_2, y_2) = \frac{\partial^2}{\partial x_2 \partial y_1} \widetilde{K}(x_1, y_1; x_2, y_2),$$

where
$$\widetilde{K}(x_1, y_1; x_2, y_2) = \langle u(x_1, x_2), u^*(y_1, y_2) \rangle.$$

The lemma proof follows from the definition of the function, $\widetilde{K}(x_1, y_1; x_2, y_2)$ and a relationship

$$\frac{\partial^2 \widetilde{K}}{\partial x_\ell \partial y_m} = - \langle T_\ell T_m u(x_1, x_2), u^*(y_1, y_2) \rangle.$$

If $L_{x_1y_1}L_{x_2y_2}K(x_1, y_1; x_2, y_2) \neq 0$, then the function

$$W(x_1, y_1; x_2, y_2) = L_{x_1y_1} L_{x_2y_2} K(x_1, y_1; x_2, y_2)$$
(3)

may be considered as a functional characteristic of deviation infinitesimal commutative operators T_1 and T_2 from unitary operators.

If T_1 and T_2 are doubly commuting operators $(([T_1,T_2]=0, [T_1,T_2^*]=0))$, then from (3) we may obtained the following presentations for W:

$$W(x_{1}, y_{1}; x_{2}, y_{2}) = \langle (I - T_{1}^{*}T_{1})(I - T_{2}^{*}T_{2})u(x_{1}, x_{2}), u(y_{1}, y_{2}) \rangle.$$
(4)

The presentation (4) is significant for further studies.

Remark 1: To reconstruct $K(x_1, y_1; x_2, y_2)$ by $W(x_1, y_1; x_2, y_2)$ one may solve Darboux-Goursat problem for equation $L_{x_1y_1}L_{x_2y_2}K(x_1, y_1; x_2, y_2) = W(x_1, y_1; x_2, y_2)$

twice, and defining appropriate conditions additionally.

Remark 2: If the operators T_1 and T_2 are commuting operators, but are not doubly commuting, then $W(x_1, y_1; x_2, y_2) =$ $\langle (I - T_1^*T_1 - T_2^*T_2 + T_2^*T_1^*T_1T_2)u(x_1, x_2),$

 $u(y_1, y_2)$ and further analysis is based on assumption of

commutant $[T_1, T_2^*]$ properties, for example T_1, T_2^* and $[T_1, T_2^*]$ form Lie algebra.

Theorem 1: If dim $H_0 = r < \infty$, where

$$H_{0} = (I - T_{1}T_{1})H \cap (I - T_{2}T_{2})H,$$

then
$$W(x_{1}, y_{1}; x_{2}, y_{2}) = \sum_{\alpha=1}^{r} \lambda_{\alpha} \Phi_{\alpha}(x_{1}, x_{2}) \overline{\Phi_{\alpha}(y_{1}, y_{2})}, \quad (5)$$

where $\Phi_{\alpha}(x_1, x_2) = \langle u(x_1, x_2), h_{\alpha} \rangle, h_{\alpha} \in H_0,$ and λ_{α} are real numbers.

Proof: Consider the orthonormal basis $\{h_{\alpha}\}_{\alpha=1}^{r}$ in H_{0} , consisting of eigenvector contraction of self-adjoined operator $(I - T_{1}^{*}T_{1})(I - T_{2}^{*}T_{2})$ onto its invariant subspace H_{0} . Since

$$B_{H} = (I - T_{1}^{*}T_{1})(I - T_{2}^{*}T_{2})u(x_{1}, x_{2})$$
$$= \sum_{\alpha=1}^{r} \langle Bu(x_{1}, x_{2}), h_{\alpha} \rangle h_{\alpha}$$
$$= \sum_{\alpha=1}^{r} \langle u(x_{1}, x_{2}), Bh_{\alpha} \rangle h_{\alpha}$$
$$= \sum_{\alpha=1}^{r} \lambda_{\alpha} \langle u(x_{1}, x_{2}), h_{\alpha} \rangle h_{\alpha},$$

where $Bh_{\alpha} = \lambda_{\alpha}h_{\alpha}$ and λ_{α} are eigenvalues of the operator B.

As a result, we obtain $W(x_1, y_1; x_2, y_2) =$

$$\sum_{\alpha=1} \lambda_{\alpha} \Phi_{\alpha}(x_1, x_2) \overline{\Phi_{\alpha}(y_1, y_2)} . \square$$

Remark, that the

function $K(x_1, y_1; x_2, y_2)$ defines the Hilbert-valued function $u(x_1, x_2)$ quite completely. The next assertion is valid.

Lemma 2: Consider the two functions $u_1(x_1, x_2)$ and $u_2(x_1, x_2)$ with values belonging to the Hilbert spaces $H_{uj} = \overline{\sum_{x_1, x_2 \ge 0} u_j(x_1, x_2)} \quad respectively, \quad where \quad the$

scalar product is generated by the respective function

$$K(x_{1}, y_{1}; x_{2}, y_{2}) = \left\langle u_{j}(x_{1}, x_{2}), u_{j}(y_{1}, y_{2}) \right\rangle_{H_{j}}$$

= $K_{j}(x_{1}, y_{1}; x_{2}, y_{2})$.
If $K_{1}(x_{1}, y_{1}; x_{2}, y_{2}) = K_{2}(x_{1}, y_{1}; x_{2}, y_{2})$, then
there exists a unitary transformation $U \in [H_{1}, H_{2}]$

such that $u_2(x_1, x_2) = Uu_1(x_1, x_2)$. Moreover if $u(x_1, x_2) = e^{ix_1T_1 + ix_2T_2}u_{0_1}$, then $u_2(x_1, x_2)$ is also generated by two-parametric semigroup of operators $u_2(x_1, x_2) = e^{ix_1B_1 + ix_2B_2}u_{0_2}$

Proof: Consider lineals

$$L_{j} = \left\{ \sum_{\alpha,\beta=1}^{n_{1},n_{2}} C_{\alpha,\beta} u_{j} (x_{\alpha}, x_{\beta}) \right\} n_{1}, n_{2} < \infty,$$

where, $C_{\alpha,\beta}$ are complex numbers. For $h_1^{(j)}, h_2^{(j)} \in L_j$ define binary form

$$\left\langle h_{1}^{(j)}, h_{2}^{(j)} \right\rangle_{L_{j}} =$$

$$\sum_{\alpha,\beta=1}^{n_{1},n_{2}} \sum_{p,q=1}^{m_{1},m_{2}} C_{\alpha,\beta} Q_{p,q} K_{j}(x_{\alpha}, y_{p}; x_{\beta}, y_{q}),$$
where,
$$h_{1}^{(j)} = \sum_{\alpha,\beta=1}^{n_{1},n_{2}} C_{\alpha,\beta} u_{j}(x_{\alpha}, x_{\beta}),$$

$$m_{1,m_{2}}^{(j)} = \sum_{m_{1},m_{2}}^{n_{2},m_{2}} C_{\alpha,\beta} u_{j}(x_{\alpha}, x_{\beta}),$$

$$h_{2}^{(j)} = \sum_{p,q=1}^{m_{1},m_{2}} Q_{p,q} u_{j}(x_{p}, x_{q})$$

Then L_i become pre-Hilbert spaces. Define isometric virtue of (by equality $K_1(x_1, y_1; x_2, y_2) = K_2(x_1, y_1; x_2, y_2)),$ transformation of L_1 into L_2 :

$$U\left(\sum_{\alpha,\beta=1}^{n_1,n_2} C_{\alpha,\beta} u_1(x_{\alpha}, x_{\beta})\right)$$
$$= \left(\sum_{\alpha,\beta=1}^{n_1,n_2} C_{\alpha,\beta} u_2(x_{\alpha}, x_{\beta})\right).$$

Extending U for closures L_1 and L_2 we get the first assertion of the Lemma. The second part of the Lemma follows immediately from the evident relationships:

$$u_{2}(x_{1}, x_{2}) = Uu_{1}(x_{1}, x_{2}) =$$

$$Ue^{ix_{1}T_{1} + ix_{2}T_{2}}u_{0_{1}} = e^{ix_{1}B_{1} + ix_{2}B_{2}}u_{0_{2}},$$
where $B_{j} = UT_{j}U^{-1}, u_{0_{2}} = Uu_{0_{1}}.$

Nonunitary index: Let us now define a numerical characteristic for the field deviation from the unitary field. Let us call the nonunitary index the maximal rank of quadratic forms

$$\sum_{\ell,m=1}^{n} W\left(x_{1}^{(\ell)}, y_{1}^{(\ell)}; x_{2}^{(m)}, y_{2}^{(m)}\right) Z_{\ell} \overline{Z}_{m}, \quad n \leq \infty.$$

For the unitary field a nonunitary property coefficient is equal to 0, since $W(x_1, y_1; x_2, y_2) = 0$.

Theorem 2: In order that the field $u(x_1, x_2) = e^{ix_1T_1 + ix_2T_2}u_0$, has a finite nonunitary index it is necessary and sufficiently that dim $H_0 = r < \infty$, where T_1 and T_2 are doubly commuting operators and

]

$$u_0 \in H_0 = (I - T_1^* T_1) H \cap (I - T_2^* T_2) H.$$

Proof:

Sufficiency: When dim $H_0 = r < \infty$, there exists representation (5) for $W(x_1, y_1; x_2, y_2)$ and

$$\sum_{\ell,m=1}^{n} W\left(x_{1}^{(\ell)}, y_{1}^{(\ell)}; x_{2}^{(m)}, y_{2}^{(m)}\right) Z_{\ell} \overline{Z}_{m} = \sum_{\nu=1}^{r} \lambda_{\nu} |\zeta_{\nu}|^{2},$$

where $\zeta_{\nu} = \sum_{\ell=1}^{n} \Phi_{\nu} \left(x_{1}^{(\ell)}, x_{2}^{(\ell)} \right) Z_{\ell}$. It follows that

the rank of quadratic form does not exceed r.

Necessity: Let us consider the sequence of pares of real numbers

$$x_{\ell} = \left(x_{1}^{(\ell)}, x_{2}^{(\ell)}\right), \ (\ell = \overline{1, n}).$$

Then
$$\sum_{\ell,m=1}^{n} W(x_{\ell}, x_{m}) Z_{\ell} \overline{Z}_{m} = \left\langle (I - T_{1}^{*} T_{1}) (I - T_{2}^{*} T_{2}) h, h \right\rangle$$

where $h = \sum_{\ell=1}^{n} Z_{\ell} u \left(x_{1}^{(\ell)}, x_{2}^{(\ell)} \right).$

Let

$$H_{n} = \left\{ h : h = \sum_{\ell=1}^{n} Z_{\ell} u \left(x_{1}^{(\ell)}, x_{2}^{(\ell)} \right) \right\}, \quad H_{n} \subset H_{u}$$

Consider the subspace $G_n = P_n (I - T_1^*T_1)(I - T_2^*T_2)P_nH_u$, where P_n is the projection operator onto subspace H_n . It is obvious that $G_n \subseteq P_nH_0$ and the rank of form

 $\sum_{\ell,m=1}^{n} W(x_{\ell}, x_{m}) Z_{\ell} \overline{Z}_{m} \text{ is equal to } \dim G_{n}. \text{ It is}$

evident that $H_1 \subset H_2 \subset \ldots \subset H_n \subset \ldots$ and $\lim_{n \to \infty} P_n = I$, hence rank $W > \dim G_n$ and

rank $W \ge \lim_{n \to \infty} G_n = \dim H_0$. This implies that rank dim $H_0 \le r$.

Similarly one may prove the next theorem.

Theorem 3: In order that the field $u(x_1, x_2) = e^{ix_1T_1 + ix_2T_2}u_0$,

has a finite nonunitary index it is necessary and sufficient that the subspaces

$$H_0^{(j)} = (I - T_j^* T_j) H \quad (j = 1, 2)$$

be finite-dimensional where, $u_0 \in H$, T_j are doubly commuting operators.

Further development of suggested approach is related to the spectral theory for the doubly commuting contraction systems and their triangular and universal models^[6]. Thus, one may derive canonical representation for $W(x_1, y_1; x_2, y_2)$ and perform harmonic analysis of two-parametric semigroups $e^{ix_1T_1+ix_2T_2}$ when T_1 and T_2 are doubly commuting contractions.

REFERENCES

- 1. Hille, E., Phillips, R.S., 1957. Functional Analysis and Semi-Groups, Providence, 829.
- Livčic, Moshe S., Waksman, Leonid L., 1987. Commuting Nonself-adjoint Operator in Hilbert Space, Lect Notes Math, #1272, ed. Coic and E.Ecumann, 115.
- Livčic, M. S., Kravitsky, N., Markus, A., Vinnikov, V., 1995. Theory of Commuting Nonself-adjoint Operators, Kluver academic publ., Dordrent - London, 332.
- Zolotarev, V., 1997. Functional Models for Algebras of Linear Nonself-adjoint Operators, Zeit fur Ang. Math and Mech., 77(2): 695-696.
- Riesz, F., Sz.-Nagy, B., 1972. Lessons D'Analyse Fonctionnelle, Akademiani Kiodo, Budapest, 587.
- Zolotarev, V.,1976. Triangular Models of Systems of Doubly Commuting Operators (Russian), Akad. Nauk Armjan SSR Dokl 63,136-140 (Reviewer J.L. Looper) 47A 45.