Journal of Mechatronics and Robotics

Research Article

A GUI-Enabled, Automated LSTM-Based Inverse Kinematics
Pipeline for 6-DOF Robotic Arms Using MATLAB and
CoppeliaSim

Waleed Abdulrahman Saleh Al-Akwa and Mohammed Abdulwahab Ahmed Daba

Department of Mechatronics Engineering, University of Sana'a, Sana'a, Yemen

Article history
Received: 18-01-2025
Revised: 02-04-2025
Accepted: 25-04-2025

Abstract: Existing deep learning-based inverse kinematics (IK) solutions
often target specific robotic arms and require significant modifications when
applied to different configurations. To support early-phase design and
testing of 6-degree-of-freedom (6-DOF) robotic arms, this study presents a
fast and adaptable IK solution through a user-friendly interface. Unlike
Corresponding Author: traditional numerical methods that are computationally intensive, sensitive
Waleed Abdulrahman Saleh Al- to initial conditions, and may not generalize to custom designs, the proposed
Akwa approach allows users to input Denavit-Hartenberg (DH) parameters and
Department of Mechatronics quickly generate a first-draft IK solution. This solution is built on a deep
learning-based pipeline using a Long Short-Term Memory (LSTM) neural
network integrated with a MATLAB-based graphical user interface (GUI)
for automated dataset generation and model training. To enhance
performance, this approach applies various data preprocessing techniques,
including MinMaxScaler, Normalizer, RobustScaler, and StandardScaler. It
also incorporates K-Fold cross-validation for performance evaluation and an
early stopping mechanism to prevent overfitting. Multiple 6-DOF robotic
arms are tested using MATLAB and CoppeliaSim by performing tasks, such
as trajectory tracking of letters and words on planar and non-planar surfaces,
to ensure a flexible solution across diverse robotic configurations and task
environments.

Engineering, University of Sana'a,
Sana'a, Yemen
Email: waleed.alakwa@su.edu.ye

Keywords: Inverse Kinematics, LSTM, Neural Networks, Graphical User

Interface
Introduction switching from one configuration to another, where a
. . . . different configuration may not have a solution using
Robotic manipulators are integral to various such techniques (Bouzid ef al., 2024; Zhao et al., 2024).

industries, including military, healthcare and aerospace
(Ibarra-Pérez et al., 2022). These systems consist of rigid
links interconnected by either rotational or prismatic
joints. While Forward Kinematics (FK) determines the
position and orientation of the end-effector based on
specified joint angles (Lu et al, 2022), Inverse
Kinematics (IK) calculates the joint configurations

Geometric techniques similarly struggle to scale
effectively for highly redundant manipulators (Lu et al.,
2022; Sharkawy et al., 2022). Recent advances utilizing
deep learning, including Multilayer Perceptron (MLP)
networks (Lu et al, 2022; Cagigas-Muiiiz, 2023),
Artificial Neural Networks (ANNs) and Spiking Neural
Networks (SNNs) (Volinski et al., 2022), Convolutional

required to achieve a desired end-effector position and
orientation (Aggogeri et al., 2022; Martinez-Blanco et
al., 2021), which is typically more complex because it is
computationally expensive (Sharkawy et al., 2022) and
often has multiple wvalid solutions with potential
singularities (Kvernberg, 2015; Bouzid et al., 2024).

Despite extensive research, existing IK approaches
face significant limitations regarding flexibility across
diverse robotic configurations. Approaches based on
analytical techniques, while computationally efficient,
require tedious work of derivation and adjustments when

/Z SCIENCE
%

Publications

Neural Networks (CNNs) (Elkholy et al., 2020), Deep
Deterministic Policy Gradient (DDPG) (Surriani et al.,
2024) and Bidirectional Long Short-Term Memory
(BILSTM) and Gated Recurrent Unit (GRU) models
(Wagaa et al., 2023), have improved accuracy and
efficiency. However, these approaches still face
challenges in maintaining flexibility across diverse
robotic arms. For instance, MLP networks were
enhanced by different approaches such as joint space
segmentation (Lu et al., 2022) and bootstrap sampling
(Cagigas-Muiiiz, 2023), showing improved efficiency

© 2025 Waleed Abdulrahman Saleh Al-Akwa and Mohammed Abdulwahab Ahmed Daba. This open-access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

and accuracy compared to traditional methods, but each
of these approaches was limited to only one specific
robotic arm—such as Xarm6 and Scorbot ER VII,
analyzed by Lu et al. (2022); Cagigas-Muiiiz (2023),
respectively—and required significant effort to be
adapted to other robotic platforms.

Approaches like deep learning-enhanced damped
least squares (Wang et al., 2021; Wu & Ren, 2020), Long
Short-Term Memory (LSTM) networks (Wang et al.,
2023), Backpropagation Neural Network (BPNN)
models (Ibarra-Pérez et al., 2022; Gao, 2020) and Al-
based techniques such as Neural Network Genetic
Algorithm (NNGA) and Particle Swarm Optimization
(PSO) (Khaleel & Humaidi, 2024), have improved
computation time and accuracy, but they don’t fully
explore their adaptability across different robotic tasks.
For instance, Ibarra-Pérez et al. (2022) and Gao (2020)
achieved high prediction accuracy with low error
margins using BPNNs, but their experiments were
limited to specific tasks and basic IK predictions.

To wutilize learning-based IK approaches while
providing an easy-to-use interface, this study introduces
an automated pipeline for 6-DOF robotic arms. An
interactive MATLAB-based Graphical User Interface
(GUI) was designed to automate dataset generation,
preprocessing and model training based on user-defined
Denavit-Hartenberg (DH) parameters. To test the
automated pipeline’s flexibility across different robot
configurations, systematic validations were conducted on
multiple industrial robotic arms, including ABB IRB
4600-40/2.55, KUKA KRS5 Arc and KUKA KR60-3, in
realistic simulation environments provided by MATLAB
and CoppeliaSim. Adaptability across different robotic
tasks was demonstrated through trajectory-tracking tasks
on both planar and non-planar surfaces, exemplified by
tracing complex paths such as the word "Yemen" on
spherical surfaces and the letter "W" on planar surfaces.
The proposed method achieved consistent accuracy
ranging from 88.47-92.75%, employing efficient
optimization techniques, including preprocessing scaling
methods, K-Fold cross-validation and an early stopping
mechanism.

Unlike existing approaches that require significant
manual effort for each new robot, our model supports
direct integration with different 6-DOF robotic arms,
making it more practical for early-phase robot design.

Kinematics

In this study, the ABB IRB4600-40/2.55, which is a
6-DOF robotic arm with revolute joints, is the primary
case study whose kinematics will be deeply analyzed.
The other tested robotic arms (KUKA KRS Arc and
KUKA KR60-3) are used only to further verify our
flexible proposed approach. The position and orientation

14

of each ABB IRB4600-40/2.55 joint are represented
using Denavit-Hartenberg (DH) transformation matrices,
which can be written as Eq. (1). These matrices are
products of four key parameters: Joint angle (0;), link
offset (d;), link length (a;) and link twist (0s) (Denavit and
Hartenberg, 1955):

(M

The overall transformation matrix for the robot's end-
effector relative to the base is obtained by multiplying all
the joint transformation matrices and can be written as

Eq. (2):
O =0T x 3T X 3T x 3T x 4T x 3T

3

T; = Rot, p;Trans, 4 Trans, «Roty oi#

2

25—

0.5 —|

L e B T T
1 15 2

05
Y (m) X (m)

Fig. 1: ABB IRB4600-40/2.55 coordinate system

By defining the first frame to the origin Xy, Yy, Zy, as
shown in Fig. (1), the frames are rotated and translated
according to the Denavit-Hartenberg (DH) convention
(Murray ef al., 1994) as shown in Table (1).

Table 1: DH Parameters for ABB IRB4600-40/2.55

Joint 0i(rad) Range (deg) ai-1 (rad) di(m) ai(m)

1 01 -180 ~ 180 oz 0.495 0.175
2

2 T -90 ~ 150 0 0 1.095

01- 3

3 03 -180~ 75 .z 0 0.175
2

4 04 -400 ~ 400 4z 1.270 0
2

5 05 -125~120 T 0 0
2

6 06+m -400~400 0 0.135 0

The task of solving the Inverse Kinematics (IK)
problem is very important and quite challenging due to
the geometry of the robot and the resulting nonlinear
trigonometric equations (Almusawi et al., 2016). In this
study, the proposed approach not only solved the IK
problem but also introduced an automated pipeline,
flexible to directly integrate different robotic
configurations.

http://192.168.1.15/data/12933/fig1.png
http://192.168.1.15/data/12933/fig1.png

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23
DOI: 10.3844/jmrsp.2025.13.23

Materials and Methods

Run GUI
Graphical User Interface (GUI) / s \“_\

To enhance the flexibility of our proposed solution by il Enter Parameters
making it more user-friendly, we developed a MATLAB | :
Graphical User Interface (GUI) to input the Denavit- J' '
Hartenberg (DH) parameters specific to the robotic arm

N . . Load Parameters Save Parameters
configuration, as shown in Figure (2). \ .
Once the parameters are entered (in this trial, ABB S~ ~ //
IRB 4600-40/2.55), as shown in Figure (3), the system T

generates a kinematic dataset by computing end-effector
positions and orientations for different joint movements.
Additionally, the GUI initiates the LSTM model training
process by executing an integrated Python script that
utilizes TensorFlow to train the proposed model. Real-
time feedback during training updates the user on model
progress and output values. Figure (4) illustrates the GUI
workflow, from DH parameter entry to result
visualization. Designed for flexibility, the GUI
accommodates different robotic arm configurations
without requiring code modifications. Input fields
dynamically adjust based on the selected joint type, Fig. 4: GUI workflow

A

Generate Dataset

k.

Train Model

Display Results

ensuring compatibility across multiple robot models.
Start Code Execution
{4 DH Parameter Input - [m] X
File Edit View Insert Tools Desktop Window Help 2
Dcde|S 0E|KE Generate Random Joint
Angles
Joint Type: R for Revolute, P for Prismatic, S for Spherical, U for Universal, C for Cylindrical l
Enter DH Parameters for each joint.
Loop Through Each Data
Joint | Joint Type el 0 Offset (deg) Min-Angle (deg) Max-Angle (deg)| a {i-1} d_i (m) a_i (m) R
1 Woint 1 R v 8t
2 |Joint 2 R v 82 l
3 oint3 R v 83
4] oe R ke Calculate Forward
5 |Joint 5 R v 85 n n
Kinematics
6 Moint 6 R v 86

Extract and Store Data

End-effector Position ‘ Orientation Angles ‘ Joint Angles

Write Dataset to CSV File
End Code Execution

Save Parameters Start Load Parameters Iy i 3

Fig. 2: DH table GUI parameters entry

[DH Parameter Input - o X

File Edit View Insert Tools Desktop Window Help o

Dods 8 08 RE

Joint Type: R for Revolute, P for Prismatic, S for Spherical, U for Universal, C for Cylindrical

Enter DH Paramefers for each joint. Fig' 5: Dataset generation WOrkﬂOW
Joint | Joint Type o 0 Offset (deg) Min-Angle (deg) Max-Angle (deg)| o {i-1} d_i (m) a_i (m)
1 |Joint 1 R v 61 0 -180 180 -pif2 0435 0175 B
2 |Joint 2 R ~ 82 -pif2 -90 150 0 0 1095 Data Collectlon
3 Joint 3 R v 83 0 -180 7% -pif2 0 0.175
4 Joint 4 R v 64 0 -400 400 pir2 1270 0 .
Suams R e o0 s 120 w0 0 The dataset was generated using MATLAB to
6 |Joint 6 R v 86 pi -400 400 0 0135 0

simulate the robotic arm’s workspace kinematics, similar
to the approach taken by Ibarra-Pérez et al. (2022). This
involved randomizing joint angles within their specified

o Paameters stat operational ranges to model diverse motion scenarios and
capture the corresponding end-effector positions and
Fig. 3: Loading ABB IRB 4600-40/2.55 DH parameters orientations. The dataset composition for the ABB

15

http://192.168.1.15/data/12933/fig2.png
http://192.168.1.15/data/12933/fig2.png
http://192.168.1.15/data/12933/fig3.png
http://192.168.1.15/data/12933/fig3.png
http://192.168.1.15/data/12933/fig4.png
http://192.168.1.15/data/12933/fig4.png
http://192.168.1.15/data/12933/fig5.png
http://192.168.1.15/data/12933/fig5.png

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

IRB4600-40/2.55 robotic arm encompassed around 70
million data points stored in a CSV file named
IRB4600 Dataset.csv. Additionally, each data point
captured the end-effector’s three-dimensional position
(X, Y, Z), orientation vectors (n, o, a) and Roll, Pitch and
Yaw (RPY) angles (Wang et al.,, 2023). Figure (5)
illustrates the workflow of generating the dataset for our
specified model.

Model Development

A study by Wagaa et al. (2023) considered different
deep-learning algorithms, including CNN, LSTM and
BILSTM. It suggested that LSTM and BILSTM (which
handle both forward and backward LSTM information)
are more accurate and efficient than other approaches
despite their simpler and faster training process.
Similarly, Zhang (2024), in his review, emphasized that
LSTM exhibits superior capabilities and provides more
accurate joint angle estimation, making it one of the ideal
choices for solving IK problems. Given these
advantages, LSTM was selected as the foundation of our
proposed model to develop a learning-based IK solution.

The LSTM neural network architecture was designed
to effectively process the complex kinematics data
associated with 6-DOF robotic arms. As shown in Figure
(6), the model consists of four LSTM hidden layers with
increasing units from 64 to 256, followed by dense layers
and an output layer using a linear activation function to
predict joint angles. The ReLU activation function was
applied to the LSTM layers to introduce non-linearity
(Korol et al., 2023). The selection of four LSTM layers
and the specific number of units (64, 128, 256, 256) was
determined through hyperparameter tuning experiments
to balance model accuracy, convergence speed and
overfitting prevention. There is no specific method to
accurately determine the optimum number of layers
(Wagaa et al., 2023). Initial tests with fewer layers (two
or three LSTM layers) resulted in higher validation loss
and unstable predictions, while deeper architectures
(more than four layers) did not provide significant
accuracy improvements but increased training time.

Hidden

Input Dense Output

)

uonytsod
10329j0-pug

CONCY)

\\ I/
soocoo
LLLLS
Bilhlialinds -
sajSue jurof

uoreIUALIQ
NN
ﬂ‘\\\
\ N

Fig. 6: Architecture for the proposed LSTM neural network

Additionally, K-Fold cross-validation (K = 2) was
employed to assess model robustness across different

16

data partitions, ensuring that the chosen architecture
generalized well to unseen data (Hernandez et al., 2021).
The final model demonstrated consistent accuracy
improvements across all validation folds, confirming the
effectiveness of the selected LSTM configuration.

For data preprocessing, various scaling techniques
such as MinMaxScaler (Choi et al., 2024), Normalizer
(Elkholy et al., 2020), RobustScaler (Choi et al., 2024)
and StandardScaler (Carneros-Prado et al., 2024) were
implemented for both input and output data. The model
also incorporated the early stopping mechanism during
training to prevent overfitting by halting the training
process if the validation accuracy wasn’t improved for a
set number of epochs (Volinski et al., 2022).

Start Code Execution

1

GPU Setup and Import Libraries

|

Load Dataset

Cross-Validation?

With Cross-Validation

No Cross-Validation

Data Preprocessing

Cross-Validation Setup

Data Preprocessing

Split Dataset
Define LSTM Model

Loop Through K-Folds

Split Dataset

Define and Train LSTM Model

Train LSTM Model

AHHHHE

Evaluate Model Performance

Evaluate Model Performance
for Each Fold

End Code Execution

Fig. 7: Model with and without cross-validation

Model development, as can be seen in Figure (7),
starts with setting up the Graphics Processing
Unit (GPU) to be used in the proposed model training
due to its highly efficient speed compared with the
Central Processing Unit (CPU). Then, necessary libraries
are imported for data handling and neural network

http://192.168.1.15/data/12933/fig6.png
http://192.168.1.15/data/12933/fig6.png
http://192.168.1.15/data/12933/fig7.png
http://192.168.1.15/data/12933/fig7.png

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

operations. After that, the dataset is loaded, scaled and
split into training and testing sets. A sequential LSTM
neural network 1is built and trained, with model
performance evaluated through loss and accuracy
metrics. If cross-validation is used, the process is iterated
over k-folds, with each fold's model trained and
evaluated independently, aggregating the performance
metrics for a comprehensive analysis.

Results

The ABB IRB4600-40/2.55’s testing phase involved
training the LSTM model using different scaling
techniques with K-Fold cross-validation to better
evaluate model performance. Overall, the results in Table
(2) showed consistent improvements in model accuracy,
with final validation accuracies ranging from 88.47-
92.75%, depending on the chosen scaling technique and
the incorporation of K-Fold cross-validation.

Table 2: ABB IRB4600-40/2.55 model’s scaling technique
estimated accuracies

Scaling technique Start End Epochsl to
validation validation End (Early
accuracy (%) accuracy (%) Stopping)

MinMaxScaler 17.59 88.47 86/100

Normalizer 32.00 90.16 88/100

RobustScaler 42.12 91.91 74/100

StandardScaler 36.34 92.75 76/100

StandardScaler with Fold 1: 38.82 Fold 1: 91.43 50/50

K-Fold Cross-

Validation Fold 2: 36.85 Fold 2: 92.30 50/50

! The epochs were ended early in each case using early stopping to
prevent overfitting and ensure efficient training.

StandardScaler achieved the highest final validation
accuracy (92.75%) and improved efficiency, leading to a
faster training process and better generalization

(Carneros-Prado et al.,, 2024). RobustScaler also
exhibited strong performance, achieved a final accuracy
of 91.91% and maintained a low Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE) (Choi e?
al., 2024). Normalizer and MinMaxScaler resulted in
slightly lower validation accuracies of 90.16% and
88.47%, respectively. Applying scaling features by
Normalizer and MinMaxScaler to a fixed range, often
between 0 and 1, led to slower convergence and lower
final accuracies compared to StandardScaler and
RobustScaler (Elkholy et al., 2020; Choi et al., 2024).

The training and validation curves for accuracy and
loss, as shown in Figure (8), further illustrate the
performance resulting from the applied scaling
techniques. StandardScaler exhibited the closest
alignment between training and validation. RobustScaler
also converged rapidly while maintaining a high final
accuracy. In contrast, MinMaxScaler and Normalizer
showed slower convergence, although they still reached
high validation accuracies. The loss curves for each
scaling technique demonstrate a steep initial decrease
followed by stabilization. = RobustScaler and
StandardScaler show a slightly faster decline in loss and
stabilize earlier compared to MinMaxScaler and
Normalizer.

The utilization of the cross-validation technique, as
shown in Figure (9), shows that the accuracy curves for
both Fold 1 and Fold 2 start from moderate initial values
(38.82% for Fold 1 and 36.85% for Fold 2) and increase
consistently over the training epochs, reaching above
91% by Epoch 50. Both training and validation accuracy
curves are closely aligned throughout, resulting in high
final wvalidation accuracies (91.43% for Fold 1 and
92.30% for Fold 2). The loss curves for both folds show
a steep initial decline in the first 10 epochs, followed by
gradual stabilization at low loss values.

ABB IRB4600-40/2.55 Model with Different Scaling Techniques
Training and Validation Accuracy

Accuracy

MinMaxScaler: Training
- - - :MinMaxScaler: Validation
Normalizer: Training

= = = Normalizer: Validation
RobustScaler: Training
RobustScaler: Validation
StandardScaler: Training
- - - - StandardScaler: Validation

Epochs

Training and Validation Loss

MinMaxScaler: Training
- - - :MinMaxScaler: Validation
Normalizer: Training
- - - ‘Normalizer: Validation
RobustScaler: Training
RobustScaler: Validation
StandardScaler: Training
Validation

Fig. 8: Accuracy and loss curves of ABB IRB4600-40/2.55 model with different scaling techniques

17

http://192.168.1.15/data/12933/fig8.png
http://192.168.1.15/data/12933/fig8.png

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

Accuracy

ABB IRB4600-40/2.55 Model with Cross Validation

Training and Validation Accuracy

Training: K-Fold= 1
= = = Validation: K-Fold= 1
Training: K-Fold= 2

= = = Validation: K-Fold= 2

Epochs

25

30

Training and Validation Loss

35

40

45

50

Training: K-Fold= 1
= = = Validation: K-Fold= 1
Training: K-Fold= 2

- = = Validation: K-Fold= 2

Epochs

35

40

45

Fig. 9: Accuracy and loss curves of ABB IRB4600-40/2.55 model with cross-validation

Xvs Y View
T T

T T
* Predicted
* Test 4

Xvs Z View
T

50

T T
* Predicted
* Test 7

L e
-0.5 0 0.5

3D View

Fig. 10: ABB IRB 4600-40/2.55 predicted and actual end-effector positions
Table 3: ABB IRB4600-40/2.55 model comparison between predicted and actual joint angles; Average Accuracy 92.72%

Samples 01 01 02 03 04 05 06 Accuracy
1 Actual -38.1521 -14.4687 48.05278 28.96949 9.873431 50.01912 92.76%
Predict -37.1103 -13.4717 47.04272 27.03358 7.61423 48.94568
2 Actual 7.622861 -48.7378 -48.5768 46.79007 31.13482 48.0959 92.20%
Predict 8.19713 -51.3646 -52.5853 42.16608 28.27274 4495103
3 Actual -56.3424 -8.71451 16.70616 36.33426 22.83993 -12.5774 93.01%
Predict -54.397 -9.00147 15.73885 3438157 23.85653 -10.1125
4 Actual -38.6552 53.60645 -30.5521 6.897025 21.89236 -22.1092 93.38%
Predict -37.3684 50.96294 -28.8911 5.767998 22.09929 -20.1844
5 Actual 3.734295 -22.4269 -16.5102 10.62862 25.09474 -3.0021 92.26%
Predict 3.207422 -22.0958 -16.0432 10.01813 25.87689 -3.5773

18

http://192.168.1.15/data/12933/fig9.png
http://192.168.1.15/data/12933/fig9.png
http://192.168.1.15/data/12933/fig10.png
http://192.168.1.15/data/12933/fig10.png

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

A visual inspection of the model's predicted versus
actual end-effector positions was conducted using a 3D
scatter plot, as shown in Figure (10), where green and
red dots represented the actual and predicted positions,
respectively. The high degree of overlap between these
points indicated the model's accuracy in predicting joint
configurations that achieve the desired end-effector
positions. Additionally, a comparative analysis between
actual and predicted joint angles for the ABB IRB4600-
40/2.55 robotic arm is shown in Table (3). Five test
samples were taken for this comparison, where each
sample consists of six joint angles (81-86). The actual
joint angles represent the desired values, while the
predicted joint angles are the values estimated by the
trained LSTM model.

The overall average accuracy across all samples was
92.72%, indicating that the LSTM-based inverse
kinematics model is highly precise in estimating joint
angles for the ABB IRB4600-40/2.55 robotic arm.
Additionally, the low RMSE and MAE metrics in Table
(4) demonstrated minimal discrepancies between
predicted and actual values.

Table 4: RMSE and MAE for ABB IRB 4600-40/2.55 trained

model
Metric 1 2 3 4
RMSE 0.000565 0.000586 0.000484 0.000266
MAE 0.0177 0.0192 0.0175 0.0128

To validate the model's practical applicability, the
ABB IRB 4600-40/2.55 robotic arm was commanded to
write the letter "W" in CoppeliaSim with added Gaussian
noise to simulate sensor inaccuracies and real-world
mechanical variations in order to assess the model’s
ability to maintain accurate predictions under realistic
operating conditions (Korol et al., 2023). The trajectory
was closely followed by the robot without noticeable
deviation, as shown in Figure (11). Further simulations
were conducted using MATLAB, where the ABB IRB
4600-40/2.55 was commanded to write the letter "W" on
a planar surface and the word "Yemen" on a spherical
surface, as shown in Figs. (12-13). These simulations
indicated that the model is flexible and precise in dealing
with planar and non-planar environments.

= Selected objects

s|Last selected object alias:
Lastselected object type:
Last selected object it

|

PB4600 (dleprecated name:RE4G00)
hape

151348y +0.050 z+0.0875

n
Lestselected object arientation 000 b:000 g
Simulaion tme: 00:00:16.90 (ct-50.0 ms, ppf-1)

Fig. 11: ABB IRB 4600-40/2.55 model test to write the letter
"W" using CoppeliaSim

Robot Path

P

| ABB IRB4600-40/2.55

Ta
2— 4
2
0
S ”
74 A 2
4

-3 . N e e
LT a4
.

Y-axis (m)
X-axis (m)

Fig. 12: ABB IRB 4600-40/2.55 model test to write the letter
"W" using MATLAB

25+ = Robot Path

2- ABB IRB 4600-40/2.55

Z-axis (m)

[
7 I :
Ty, L P S VS
15 1 * Vu 71 |

Y-axis (m)

X-axis (m)

Fig. 13: ABB IRB 4600-40/2.55 model test to write the word
"Yemen" on a sphere using MATLAB

To test the flexibility of the proposed approach across
different robotic configurations, other 6-DOF robotic
arms were tested, including the KUKA KR 5 Arc and
KUKA KR60-3. The designed GUI was used to input the
Denavit-Hartenberg (DH) parameters of these robotic
arms and upon clicking the GUI start button, the
following steps occurred sequentially:

1. Dataset generation: The dataset was generated
automatically in MATLAB

2. Model training: The MATLAB Engine API was
used to connect with Python (Jupyter Lab). Then,
the generated dataset was loaded by the LSTM
model for the training stage.

3. Model prediction: After training, the model began
predicting joint angles for any point within the
robot's workspace to achieve the desired end-
effector position and orientation

Figure (14) shows the training and validation curves
for the resulting accuracy and loss for these robotic arms.
The KUKA KR 5 Arc and KUKA KR60-3 exhibited
stable learning with validation accuracies of 90.62% and
90.47%, respectively. Similarly, the loss curves were
consistent with those observed in the ABB IRB 4600-
40/2.55 model, demonstrating a steep initial decrease

http://192.168.1.15/data/12933/fig11.png
http://192.168.1.15/data/12933/fig11.png
http://192.168.1.15/data/12933/fig12.png
http://192.168.1.15/data/12933/fig12.png
http://192.168.1.15/data/12933/fig13.png
http://192.168.1.15/data/12933/fig13.png

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

followed by stabilization. Tables (5-6) show a
comparative analysis between the actual and predicted
joint angles for both KUKA KR 5 Arc and KUKA KR60-
3. The average accuracies were 90.6 and 90.4%,
respectively. These results indicated that the proposed
model was able to estimate precise joint angles for both
robotic arms. Low RMSE and MAE values, as shown in
Table (7), further indicated the minimal discrepancies
between predicted and actual values.

Moreover, to validate the model's accuracy in a
simulated environment, we conducted another test using
MATLAB. Both robotic arms were commanded to write
the letter "W", as shown in Figs. (15-16). KUKA KR 5
Arc demonstrated precise trajectory tracking with
minimal deviation due to its compact structure, while the
KUKA KR60-3 maintained accuracy over a larger
workspace but exhibited slight dynamic effects due to its
extended reach.

KUKA KR 5 Arc and KUKA KR60-3
Training and Validation Accuracy

Accuracy

KR 5: Training
- - - *KR 5 Validation
KR60-3: Training
- = = ‘KR60-3: Validation

0 10 20 30 40 50

Loss

Epochs

60 70 80 90 100

Training and Validation Loss

KR 5: Training
- - - "KR 5 Validation
KR60-3: Training
= = = ‘KR60-3: Validation

o \ \ \ \ \
0 10 20 30 40 50

Epochs

Fig. 14: Accuracy and loss curves of KUKA KR 5 Arc and KUKA KR60-3 models

Table 5: KUKA KR 5 Arc model comparison between predicted and actual joint angles; Average Accuracy 90.6%

Samples 0i 01 02 03 04 05 06 Accuracy
1 Actual -9.10511 -7.35384 12.38574 -87.5915 31.17037 82.58307 90.07%
Predict -10.9627 -8.93495 13.61338 -88.3488 29.87487 80.31445
2 Actual 29.11507 54.66291 6.266068 -65.7562 49.64762 9.596348 90.78%
Predict 28.85066 56.28456 4.810633 -66.2897 44.46794 11.22401
3 Actual 46.07554 15.77651 -7.57522 -8.18301 33.16003 -11.0968 91.33%
Predict 45.75831 15.26789 -8.80765 -7.52399 33.56766 -13.602
4 Actual 39.38837 13.39209 -12.984 83.17668 34.05664 -45.1423 91.05%
Predict 41.81043 15.32537 -10.702 85.37033 36.81911 -47.3155
5 Actual -12.5971 -1.13944 -6.91542 6.771719 30.81741 10.01993 90.19%
Predict -12.5047 -1.37869 -6.36012 6.802795 30.78708 12.87984

Table 6: KUKA KR60-3 model comparison between predicted and actual joint angles; Average Accuracy 90.4%

Samples 0i 01 02 03 04 05 06 Accuracy
1 Actual 4746161 -18.7959 57.0603 88.81509 -44.8883 46.31631 90.75%
Predict 50.87112 -22.4236 60.08445 84.56924 -49.1375 50.68897
2 Actual -83.674 21.64952 3220376 68.7404 10.04532 -27.0067 90.07%
Predict -85.0301 23.98203 29.85171 63.30581 8.492323 -22.5427
3 Actual -3.1581 -26.6831 69.45905 -76.3869 -9.58206 -65.7873 90.56%
Predict -4.01884 -28.4315 65.25291 -80.0226 -9.89739 -60.0279
4 Actual -58.0358 -12.7951 -56.0422 13.67581 12.55865 -47.9691 90.11%

Predict -56.4978 -13.6215 -56.7346 18.17967 13.62612 -51.614
5 Actual -53.8807 10.36354 -74.6653 -6.01011 -69.3135 -42.6721 90.02%
Predict -52.1509 11.12066 -729175 -7.90856 -71.1573 -45.5663

20

http://192.168.1.15/data/12933/fig14.png
http://192.168.1.15/data/12933/fig14.png

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

Table 7: RMSE and MAE for KUKA KR 5 Arc and KUKA KR60-
3 trained models

Metric 1 2 3 4
KUKA KR 5 Arc
RMSE 0.00026 0.00039 0.00015 8.7E-05
MAE 0.0113 0.0123 0.0088 0.0064
KUKA KR60-3
RMSE 0.00062 0.00075 0.0006 0.00045
MAE 0.0181 0.0203 0.0168 0.0159

1 e,

2 == o Y-axis (m)

Fig. 15: KUKA KR 5 Arc model test to write the letter "W"
using MATLAB

_Robot Path

x

KUKA KR60-3

K Y-axis (m)

X-axis (m)

Fig. 16: KUKA KR60-3 model test to write the letter "W"
using MATLAB

Discussion

This study’s approach utilized an LSTM neural
network to handle the sequential nature of joint data
effectively and this choice resulted in high validation
accuracies across different robotic arms. These
accuracies are consistent with the performances reported
in Zhang (2024); Wagaa et al. (2023), which validated
our choice of the LSTM neural network over other
existing approaches such as CNN and GRU (Wagaa et
al., 2023).

Unlike existing studies that focused solely on specific
robotic arms such as Xarm6 (Lu et al, 2022) and
Scorbot ER VII (Cagigas-Muiiiz, 2023), our approach

21

explored multiple robotic arms such as ABB IRB 4600-
40/2.55, KUKA KR 5 Arc and KUKA KR60-3, resulting
in high wvalidation accuracies of 92.75, 90.62 and
90.47%, respectively. The adaptability limitations across
different robotic tasks were effectively addressed by
implementing practical motion executions, such as real-
time trajectory tracking on both planar and non-planar
surfaces, using MATLAB and a dynamic industrial
environment like CoppeliaSim, as shown in Figs. (11-
13). This contrasts with studies like Ibarra-Pérez et al.
(2022) and Gao (2020), whose improved models were
simulated only in MATLAB and focused exclusively on
basic inverse kinematics predictions without testing in
diverse environments and tasks.

Regarding optimization techniques, our deep learning
model utilized different preprocessing scaling methods to
improve model convergence and accuracy, K-Fold cross-
validation (K = 2) to assess model robustness across
different data partitions, ensuring generalization beyond
the training dataset and an early stopping mechanism to
prevent overfitting by halting training when model
improvements plateaued. These strategies resulted in
higher accuracy compared to existing approaches. For
example, Ibarra-Pérez et al. (2022) and Wu and Ren
(2020) employed optimization techniques such as the
Taguchi method and genetic algorithms to enhance
training time and accuracy. However, Ibarra-Pérez et al.
(2022) reported a prediction accuracy of 87.71%, which
is lower than the validation accuracies achieved by our
approach across the three tested robotic arms.

A comparative analysis was also conducted to
validate the proposed approach further. The average
accuracy was estimated using different testing samples of
actual and predicted joint angles by the developed LSTM
model for the three tested robotic arms, as shown in
Tables (3, 5 and 6). These comparisons revealed minimal
discrepancies between predicted and actual values and
yielded high validation accuracies, confirming the
superior flexibility of our approach across different
robotic arms.

Conclusion

The proposed approach demonstrated -efficient
performance in predicting joint configurations for the
ABB IRB 4600-40/2.55, KUKA KR 5 Arc and KUKA
KR60-3 robotic arms. The real-time simulations
conducted in CoppeliaSim and MATLAB further
validated the model's practical applicability, with
successful demonstrations of different tasks, including
tracing complex paths on planar and non-planar surfaces.
The integration of a user-friendly GUI makes our method
accessible for industrial applications, especially in the
early-phase designs, even for users with limited technical
knowledge. However, the flexibility of the proposed
model is constrained by the varying joint angle limits of
different robotic arms, which may affect training
efficiency since the model uses a single LSTM neural

http://192.168.1.15/data/12933/fig15.png
http://192.168.1.15/data/12933/fig15.png
http://192.168.1.15/data/12933/fig16.png
http://192.168.1.15/data/12933/fig16.png

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

network pre-configuration for all 6-DOF robotic arms.
Future research should focus on exploring more
advanced LSTM configurations or incorporating hybrid
architectures that can better accommodate the unique
kinematic constraints of different robotic arms.
Additionally, integrating real-world testing environments
and incorporating feedback mechanisms for error
correction are important steps toward advancing the
applicability of our method in diverse industrial settings.
Finally, this study contributes significantly to the
academic and industrial fields by presenting an LSTM-
based inverse kinematics automated pipeline for 6-DOF
robotic arms facilitated by a user-friendly GUI that
provides significant flexibility.

Acknowledgement

Authors extend their sincere gratitude to Sana’a
University’s Department of Mechatronics Engineering.
Authors also deeply appreciate their families unwavering
support and encouragement.

Funding Information

There is no received funding or financial support to
report.

Author’s Contributions

Waleed Abdulrahman Saleh Al-Akwa: Contributed
to the conception, design, development and
implementation of this study. He also contributed to
writing the original draft, analyzing the data, and
conceptualizing this study.

Mohammed Abdulwahab Ahmed Daba:
Contributed to drafting and critical revision of the
manuscript as well as to the supervision and
investigation.

Ethics

This study is original and has not been published
before. The authors declare that no conflict of interest or
any ethical issues may arise.

References

Aggogeri, F., Pellegrini, N., Taesi, C., & Tagliani, F. L.
(2022). Inverse kinematic solver based on machine
learning sequential procedure for robotic
applications. Journal of Physics: Conference
Series, 2234(1), 012007.
https://doi.org/10.1088/1742-6596/2234/1/012007

Almusawi, A. R. J., Diilger, L. C., & Kapucu, S. (2016).
A New Artificial Neural Network Approach in
Solving Inverse Kinematics of Robotic Arm
(Denso VP6242). Computational Intelligence and
Neuroscience, 2016, 1-10.
https://doi.org/10.1155/2016/5720163

22

Bouzid, R., Gritli, H., & Narayan, J. (2024). ANN
Approach for SCARA Robot Inverse Kinematics
Solutions with Diverse Datasets and Optimisers.
Applied Computer Systems, 29(1), 24-34.
https://doi.org/10.2478/acss-2024-0004

Cagigas-Muiiiz, D. (2023). Artificial Neural Networks
for inverse kinematics problem in articulated
robots. Engineering Applications of Artificial
Intelligence, 126, 107175.
https://doi.org/10.1016/j.engappai.2023.107175

Carneros-Prado, D., Dobrescu, C. C., Cabaiiero, L.,
Villa, L., Altamirano-Flores, Y. V., Lopez-Nava, L.
H., Gonzalez, 1., Fontecha, J., & Hervas, R. (2024).
Synthetic 3D full-body skeletal motion from 2D
paths using RNN with LSTM cells and linear
networks. Computers in Biology and Medicine,
180, 108943.
https://doi.org/10.1016/j.compbiomed.2024.108943

Choi, H. S., Yoon, S., Kim, J., Seo, H., & Choi, J. K.
(2024). Calibrating Low-Cost Smart Insole Sensors
with Recurrent Neural Networks for Accurate
Prediction of Center of Pressure. Sensors, 24(15),
4765. https://doi.org/10.3390/s24154765

Denavit, J., & Hartenberg, R. S. (1955). A Kinematic
Notation for Lower-Pair Mechanisms Based on
Matrices. Journal of Applied Mechanics, 22(2),
215-221. https://doi.org/10.1115/1.4011045

Elkholy, H. A., Shahin, A. S., Shaarawy, A. W., Marzouk,
H., & Elsamanty, M. (2020). Solving Inverse
Kinematics of a 7-DOF Manipulator Using
Convolutional Neural Network. Proceedings of the
International Conference on Artificial Intelligence
and Computer Vision (AICV2020), 343-352.
https://doi.org/10.1007/978-3-030-44289-7 32

Gao, R. (2020). Inverse kinematics solution of Robotics
based on neural network algorithms. Journal of
Ambient Intelligence and Humanized Computing,
11(12), 6199-6209.
https://doi.org/10.1007/s12652-020-01815-4

Hernandez, V., Dadkhah, D., Babakeshizadeh, V., &
Kuli¢, D. (2021). Lower body kinematics
estimation from wearable sensors for walking and
running: A deep learning approach. Gait & Posture,
83, 185-193.
https://doi.org/10.1016/j.gaitpost.2020.10.026

Ibarra-Pérez, T., Ortiz-Rodriguez, J. M., Olivera-
Domingo, F., Guerrero-Osuna, H. A., Gamboa-
Rosales, H., & Martinez-Blanco, Ma. del R.
(2022). A Novel Inverse Kinematic Solution of a
Six-DOF Robot Using Neural Networks Based on
the Taguchi Optimization Technique. Applied
Sciences, 12(19), 9512.
https://doi.org/10.3390/app12199512

Khaleel, H. Z., & Humaidi, A. J. (2024). Towards
accuracy improvement in solution of inverse
kinematic problem in redundant robot: A
comparative analysis. [International Review of
Applied Sciences and Engineering, 15(2), 242-251.
https://doi.org/10.1556/1848.2023.00722

https://doi.org/10.1088/1742-6596/2234/1/012007
https://doi.org/10.1155/2016/5720163
https://doi.org/10.2478/acss-2024-0004
https://doi.org/10.1016/j.engappai.2023.107175
https://doi.org/10.1016/j.compbiomed.2024.108943
https://doi.org/10.3390/s24154765
https://doi.org/10.1115/1.4011045
https://doi.org/10.1007/978-3-030-44289-7_32
https://doi.org/10.1007/s12652-020-01815-4
https://doi.org/10.1016/j.gaitpost.2020.10.026
https://doi.org/10.3390/app12199512
https://doi.org/10.1556/1848.2023.00722

Waleed Abdulrahman Saleh Al-Akwa et al. / Journal of Mechatronics and Robotics 2025, Volume 9: 13.23

DOI: 10.3844/jmrsp.2025.13.23

Korol, A. S., Rodzin, T., Zabava, K., & Gritsenko, V.
(2023). Neural networks-based approach to solve
inverse kinematics problems for medical
applications. 2024 46th Annual International
Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), 1-6.
https://doi.org/10.1109/EMBC53108.2024.10782521

Kvernberg, P. (2015). Developing force control scenarios
on ABB IRB 4600 with camera capture of dynamic
motions.

Lu, J., Zou, T., & Jiang, X. (2022). A Neural Network
Based Approach to Inverse Kinematics Problem for
General Six-Axis Robots. Sensors, 22(22), 8909.
https://doi.org/10.3390/s22228909

Martinez-Blanco, Ma. del R., Ibarra-Pérez, T., Olivera-
Domingo, F., & Ortiz-Rodriguez, J. M. (2021).
Robust Design of Artificial Neural Network
Methodology to Solve the Inverse Kinematics of a
Manipulator of 6 DOF. Artificial Intelligence (Al),
171-210. https://doi.org/10.1201/9781003005629-9

Murray, R. M., Li, Z., & Sastry, S. S. (1994). 4
mathematical introduction to robotic manipulation.
https://doi.org/10.1201/9781315136370

Sharkawy, A.-N. (2022). Forward and inverse kinematics
solution of a robotic manipulator using a multilayer
feedforward neural network. Journal of
Mechanical and Energy Engineering, 6(2), 1-17.
https://doi.org/10.30464/jmee.00300

Surriani, A., Wahyunggoro, O., & Imam Cahyadi, A.
(2024). Inverse kinematic solution and singularity
avoidance using a deep deterministic policy
gradient approach. IAES International Journal of
Artificial Intelligence (1J-Al), 13(3), 2999.
https://doi.org/10.11591/ijai.v13.i3.pp2999-3009

Volinski, A., Zaidel, Y., Shalumov, A., DeWolf, T., Supic,
L., & Ezra Tsur, E. (2022). Data-driven artificial
and spiking neural networks for inverse kinematics
in neurorobotics. Patterns, 3(1), 100391.
https://doi.org/10.1016/j.patter.2021.100391

23

Wagaa, N., Kallel, H., & Mellouli, N. (2023). Analytical
and deep learning approaches for solving the
inverse kinematic problem of a high degrees of
freedom robotic arm. Engineering Applications of
Artificial Intelligence, 123, 106301.
https://doi.org/10.1016/j.engappai.2023.106301

Wang, S., Zhang, Y., Chen, S., Xu, M., Yu, Y., & Liu, P.
(2023). Inverse Kinematics Analysis of 5-DOF
Cooperative Robot Based on Long Short-Term
Memory Network. 2023 IEEE 3rd International
Conference on Software Engineering and Artificial
Intelligence (SEAI), 245-249.
https://doi.org/10.1109/s€ai59139.2023.10217721

Wang, X., Liu, X., Chen, L., & Hu, H. (2021). Deep-
learning damped least squares method for inverse
kinematics of redundant robots. Measurement, 171,
108821.
https://doi.org/10.1016/j.measurement.2020.108821

Wu, J., & Ren, X. (2020). Inverse kinematics solution
and motion simulation of seven-degree-of-freedom
ascending platform based on neural network.
Journal of Physics: Conference Series, 1650(3),
032127.
https://doi.org/10.1088/1742-6596/1650/3/032127

Zhang, B. (2024). Inverse Kinematics Implementation
Techniques in Robotics. Highlights in Science,
Engineering and Technology, 81, 109-120.
https://doi.org/10.54097/vejx7557

Zhao, C., Wei, Y., Xiao, J., Sun, Y., Zhang, D., Guo, Q.,
& Yang, J. (2024). Inverse kinematics solution and
control method of 6-degree-of-freedom
manipulator based on deep reinforcement learning.
Scientific Reports, 14(1), 12467.
https://doi.org/10.1038/s41598-024-62948-6

https://doi.org/10.1109/EMBC53108.2024.10782521
https://doi.org/10.3390/s22228909
https://doi.org/10.1201/9781003005629-9
https://doi.org/10.1201/9781315136370
https://doi.org/10.30464/jmee.00300
https://doi.org/10.11591/ijai.v13.i3.pp2999-3009
https://doi.org/10.1016/j.patter.2021.100391
https://doi.org/10.1016/j.engappai.2023.106301
https://doi.org/10.1109/seai59139.2023.10217721
https://doi.org/10.1016/j.measurement.2020.108821
https://doi.org/10.1088/1742-6596/1650/3/032127
https://doi.org/10.54097/vejx7557
https://doi.org/10.1038/s41598-024-62948-6

