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Abstract: Early disease detection in plants is essential for sustaining
agricultural yield and guaranteeing food security. A comparative analysis of
transformer-based and convolutional based deep learning models for
classifying tomato leaf diseases is presented. Specifically, it examines the
performance of a Vision Transformer (ViT), tested both in a form of scratch
training setup and through transfer learning, against well-known CNN
architectures such as Inception V3, VGG16, ResNet50, and a custom-
designed lightweight CNN. This is one of the few studies to rigorously
benchmark ViT against CNNs in the context of agricultural disease detection
using the PlantVillage dataset. The fine-tuned ViT model delivered the best

Email: sunilvithlani it@ddu.ac.in results, achieving an accuracy of 95.53%, significantly outperforming all

CNN counterparts. The lightweight CNN demonstrated strong performance
with 93.12% accuracy, while offering clear benefits in terms of smaller
model size and reduced computational cost making it well-suited for on-
device or edge-level applications. Conversely, the ViT model trained from
scratch underperformed due to dataset constraints, reinforcing the necessity
of transfer learning for transformer architectures. Evaluation metrics
included recall, accuracy, Fl-score, and precision, which collectively
illustrated the trade-off between high-capacity models and deployment
feasibility. The main contribution of this work lies in introducing
transformer-based learning into the plant pathology domain and the
presentation of a scalable, low-computation alternative via lightweight
CNNs. Future directions involve enlarging the dataset, integrating
explainable Al techniques, and enabling real-time applications for precision
agriculture.

Keywords: Convolutional Neural Network (CNN), Deep Learning (DL),
Machine Learning, Plant Disease Classification, Tomato Leaf Disease
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Introduction

Tomatoes (Solanum lycopersicum) are among the
most widely cultivated horticultural crops globally,
playing a critical role in food security and agricultural
economies. According to Food and Agriculture
Organization (FAO) statistics, global production
surpasses 180 million tonnes annually (FAOSTAT,
2025), reflecting its importance in dietary consumption,
processed foods, and industrial applications. Beyond their
nutritional benefits, tomatoes are an essential income
source for millions of smallholder and commercial
farmers across  diverse agro-climatic zones
(Schreinemachers et al., 2018). Despite their significance,
tomato crops are highly vulnerable to a wide array of

Y, SCIENCE
%

Publications

bacterial, fungal, and viral diseases, which severely
reduce yield quality and quantity (Manjunatha et al.,
2025).

Among the most damaging pathogens are Septoria
Leaf Spot, Late Blight, Early Blight, and Tomato Mosaic
Virus each posing distinct diagnostic and control
challenges (Alzahrani and Alsaade, 2023). Improper or
delayed identification often results in the indiscriminate
application of chemical treatments, such as fungicides and
insecticides, which contribute to rising production costs,
environmental degradation, and the emergence of
pesticide-resistant pathogen strains (Sakkarvarthi et al.,
2022). These conventional approaches not only
compromise food safety but also hinder sustainable
farming practices.
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Conventional disease monitoring predominantly relies
heavily on human visual inspection, which is labor-
intensive, subjective, and prone to error especially in early
stages where symptoms may be subtle or overlap across
multiple diseases (Prajapati et al., 2017). Moreover,
manual methods lack scalability, making them unsuitable
for large-scale agricultural operations. These limitations
highlight the urgent requirement for automated, accurate,
and field-deployable disease detection systems.

The emergence of Artificial Intelligence (Al) and, in
particular, DL has revolutionized the domain of
automated plant disease detection. Convolutional Neural
Networks (CNNs) achieved remarkable success in
computer vision by learning hierarchical representations
directly from raw image data (Li ez al., 2021). While
CNNs such as VGG16 (Simonyan and Zisserman,
2015) , Inception V3 (Szegedy et al., 2016), and
ResNet50 (He et al., 2016) have demonstrated strong
classification performance but are computationally
intensive due to their depth and parameter complexity.

To address this, our study introduces a comparative
analysis involving:

1. Fine-tuned CNN models: VGG16, Inception V3, and
ResNet50

2. A custom lightweight CNN with significantly fewer
parameters

3. A transformer-based approach using the ViT-Base
model (Dosovitskiy et al., 2021)

Unlike CNNs, the ViT divides an image into fixed-size
patches and processes them using transformer encoders,
enabling the capture of long-range dependencies and
global contextual features often missed by conventional
convolutional filters.

Literature Review

Crop productivity is strongly influenced by plant
diseases, which can be broadly categorized as biotic
(caused by pathogens such as fungi, bacteria, and viruses)
or abiotic (resulting from environmental stresses like
nutrient deficiencies, drought, or pollutants). Early and
reliable detection is therefore critical for minimizing yield
losses and ensuring sustainable production (Li et al.,
2021).

DL approaches for plant disease recognition typically
fall into three main categories: image classification, object
detection, and semantic segmentation. Classification-
based models assign entire images to predefined
categories and are widely applied for disease
presence/absence detection. CNN-based architectures
such as Inception V3, and VGG16 have been particularly
effective in extracting discriminative features from leaf
images (Li et al., 2021). Object detection-based
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techniques not only classify but also localize affected
areas using bounding boxes. While two-stage detectors
such as R-CNN (Girshick et al., 2014) and Faster R-CNN
(Ren et al., 2017) offer high accuracy, they are
computationally expensive (Du et al., 2020). In contrast,
one-stage detectors like YOLO (Redmon et al., 2016) and
SSD (Liu et al., 2016) provide real-time detection
capabilities at the cost of reduced accuracy.
Segmentation-based approaches, which highlight the
diseased regions at the pixel level, have been explored
using DL models such as FCN (Long ef al., 2015) and
Mask R-CNN (Bondre and Patil, 2024), allowing precise
identification of affected areas within the plant structure.
Several studies have investigated different CNN and
other DL models for crop disease identification. Amara et al.
(2017) employed the LeNet-CNN model to classify
banana leaf diseases using a dataset from PlantVillage,
achieving an accuracy of 99.72% by training the model on
3,700 resized images. Similarly, (Guerrero-Ibafiez and
Reyes-Muiioz, 2023) proposed a four-layer CNN for
tomato leaf disease recognition, achieving 99.64%
accuracy on a dataset combining Plant Village and field
images, enhanced through GAN-based augmentation and
K-fold cross-validation. (Trivedi et al, 2021)
demonstrated an accuracy of 98.49% using an eight-layer
deep neural network fine-tuned on the PlantVillage
dataset for early tomato disease detection. Wang et al.
(2017) explored DL for apple leaf disease severity
classification and trained VGG19, VGG16, ResNet50,
and Inception V3, models with transfer learning,
achieving 90.4% accuracy with VGG16 on a dataset
containing 17,640 images. Kerkech et al. (2020)
introduced an innovative approach using UAV-based
vineyard images captured with RGB and infrared
cameras. They segmented the images using separate
SegNet models for each modality and achieved a
classification accuracy of 95.02% by implementing a
fusion strategy that combined RGB and infrared data.
Karthik et al. (2020) investigated the effectiveness of
traditional CNNs, residual CNNs, and attention-based
residual CNNs for tomato leaf disease detection using an
extensive dataset from Plant Village. Their dataset,
augmented to 95,999 images, was validated using a five-
fold cross-validation strategy, resulting in an accuracy of
98% for the attention-based residual CNN model, which
effectively focused on disease-relevant image features.
Picon et al. (2019), explored both single and multi-crop
classification models using images captured in real field
conditions via mobile devices. Their dataset consisted of
121,955 images spanning several crops, including wheat,
rapeseed, corn, rice, and barley. By employing ResNet50,
they compared independent crop-specific models against
a multi-crop classification model and found that the latter
slightly outperformed single-crop models, achieving an
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accuracy of 98%. Their results further suggested that
incorporating crop-type information during training
improved model generalization across different plant
species and environmental conditions.

While these studies demonstrate significant
advancements in plant disease classification, several
research gaps persist. A primary limitation is the lack of
generalization across real-world agricultural
environments. Many models are trained on controlled
datasets like Plant Village (Hughes and Salathe, 2015),
which contain high-resolution, controlled images.
However, these models often struggle to maintain high
accuracy when deployed in real-world conditions, where
lighting wvariations, occlusions, and background noise
introduce significant challenges. Multi-disease detection
remains underexplored, as most studies assume only one
disease per sample, despite the common occurrence of co-
infections (Kamilaris and Prenafeta-Boldu, 2018).

Furthermore, most high-accuracy models rely on
computationally expensive architectures, making them
unsuitable for distribution on low-power devices such as
UAVs and mobile phones. The development of
lightweight, optimized models that maintain high
performance while operating on low resource devices is
essential for practical applications in precision agriculture
(Peyal et al., 2023). The lack of transparency in DL
models creates significant challenges for their
interpretability and trust. To support informed decisions
in disease management and pesticide use, farmers and
agronomists need explainable AI methods that clarify
model predictions (Samek ef al., 2017). Moreover, while

some studies have incorporated RGB and infrared
imaging (Kerkech et al., 2020), the potential of
multispectral and hyperspectral imaging remains
underutilized. These advanced imaging modalities could
enhance disease differentiation by capturing spectral
signatures beyond the visible range, enabling more precise
identification of disease symptoms (Arnal Barbedo, 2019).

Another challenge in plant disease classification is the
dependency on large amounts of labelled training data.
Many existing models require extensive datasets, which
may not be available for all crops or disease types.
Transfer learning and data augmentation techniques, such
as GAN-based synthetic image generation (Guerrero-
Ibafiez and Reyes-Mufioz, 2023), can be leveraged to
address this limitation. Future research should explore
cross-domain adaptation strategies that allow models trained
on well-studied crops like tomatoes to be fine-tuned for less-
documented crops with limited available data.

Although DL has greatly enhanced accuracy and
efficiency of plant disease classification, challenges related
to generalization, multi-disease detection, computational
efficiency, interpretability, and data availability remain
unresolved. Overcoming these challenges is crucial to
realizing the practical use of DL models in precision
agriculture, thereby enhancing crop health monitoring and
promoting sustainable farming practices.

Comparative Analysis

Table 1 summarizes key studies on plant disease
detection with deep learning.

Table 1: Comparison of Deep Learning Approaches for Plant Disease Detection

Study Model Used Dataset Task Type Accuracy (%)  Key Findings Limitations
(Amara et al.,2017)  LeNet-CNN PlantVillage Classification 99.72 Achieved high Limited dataset,
(Banana leaves) accuracy for banana lacks real-field
leaf diseases validation
(Guerrero-Ibafiez 4-layer CNN + PlantVillage + Classification 99.64 Combined real-world ~ Small model size
and Reyes-Mufioz, GAN-based Field Images and synthetic data, but high accuracy;
2023) augmentation (Tomato) preventing overfitting  lacks multi-class
detection
(Trivedi et al., 8-layer DNN PlantVillage Classification 98.49 Early tomato disease Does not
2021) (Tomato) detection with deep generalize well to
learning real-world
conditions
(Wang et al., 2017) VGGl6, PlantVillage Classification 90.4 (VGG16)  Fine-tuned transfer High dependency
VGG19, (Apple leaves) learning models for on dataset, lacks
Inception V3, apple leaf disease multi-disease
ResNet50 classification
(Kerkech et al., SegNet (RGB+  UAV-based Segmentation 95.02 Utilized RGB and Computationally
2020) Infrared) Vineyard Dataset infrared fusion for expensive for real-
improved detection time field
deployment
(Karthik et al., CNN, Residual PlantVillage Classification 98 Attention mechanism  High training time
2020) CNN, (Tomato) improved feature and data
Attention- selection augmentation
Based CNN required
(Picon et al., 2019) ResNet50 Multi-Crop Classification 98 Multi-crop model Requires crop-type
Dataset (121,955 improved information for
images) generalization best performance
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This comparative study highlights that while CNN-
based approaches have demonstrated high classification
accuracy, they often suffer from poor generalization in
real-world conditions. Hybrid approaches that integrate
multiple imaging modalities (e.g., RGB and infrared)
show potential for improved performance but remain
computationally expensive. Attention mechanisms and
generative models such as GANs offer promising
solutions to data scarcity but require extensive
computational resources. Addressing these research gaps
will be crucial in advancing DL applications for robust
and scalable plant disease detection.

Research Gaps

Despite the developments in deep learning-based plant
disease identification, several critical research gaps
remain unaddressed:

e Limited Generalization to Real-World Conditions:
Most existing models are trained on controlled
datasets such as PlantVillage, which contain uniform
lighting and background conditions. These models
often struggle when deployed in real-field conditions

with  varying illumination, occlusions, and
environmental noise (Ahmad et al., 2023; Picon et al.,
2019)

e Lack of Multi-Disease Classification Models: Most
existing studies concentrate on identifying a single
disease in each image, while in real-world
agricultural  settings, multiple diseases may
simultaneously affect the same plant. Developing
multi-label classification models remains a challenge
(Demilie, 2024)

e High Computational Costs and Resource Constraints:
Numerous DL architectures demand substantial
computational resources, limiting their suitability for
mobile or edge device deployment. There is a need
for lightweight and efficient models optimized for
real-time disease detection in low-resource
environments (Peyal et al., 2023)

e Limited Interpretability and Explainability: DL
models function as "black boxes," making it difficult
for farmers and agricultural experts to trust and
understand predictions. Explainable Al (XAI)
techniques must be integrated to improve model
transparency (Samek et al., 2017)

e  Underutilization of Advanced Imaging Modalities:
While some studies incorporate RGB and infrared
imaging, the potential of hyperspectral and multispectral
imaging for precise disease differentiation remains
underexplored (Kerkech et al., 2020)

o Dependence on Large Labeled Datasets: Many state-
of-the-art models rely on large labeled datasets,
which are often unavailable for certain crops and
diseases. Transfer learning, synthetic data generation,
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and domain adaptation techniques need further
exploration to mitigate this issue (Guerrero-Ibaiiez
and Reyes-Mufioz, 2023)

e Inadequate Studies on Disease Progression and
Severity Estimation: Most existing studies focus on
disease presence or absence without assessing
disease severity levels. Incorporating severity
estimation models would allow farmers to take timely
preventive measures (Wang et al., 2017)

Methods

This section outlines the dataset and model
development strategies employed for TLDC. The
PlantVillage dataset served as the benchmark for
assessing DL models, with transfer learning employed to
fine-tune pre-trained CNN architectures including
Inception V3, ResNet50, and VGG16. A custom
lightweight Convolutional Neural Network (CNN) was
also designed to offer a low-complexity alternative
suitable for real-time applications.

In addition to CNNSs, this study investigates the Vision
Transformer (ViT) model under two training strategies:
developing models from scratch and refining pre-trained
ones. The inclusion of ViT introduces a transformer-based
learning paradigm to the plant disease classification task.
A comparative evaluation of all models, focusing on
accuracy, generalization ability, and computational
efficiency, is presented in the subsequent sections.

Dataset

The experiments in this study are based on the
PlantVillage Tomato Leaf Dataset, a publicly available
benchmark curated for plant disease classification tasks.
The dataset comprises 14,531 high-resolution RGB
images of tomato leaves, divided into ten classes: one
Healthy class and nine disease categories, including Late
Blight, Tomato Mosaic Virus, Septoria Leaf Spot, Leaf
Mold, Early Blight, Spider Mites, Target Spot, Bacterial
Spot, and Tomato Yellow Leaf Curl Virus.

Each image depicts a single leaf photographed under
controlled lighting, usually against a uniform background,
in accordance with the PlantVillage data collection
protocol. This uniformity supports effective model
training while still presenting challenges such as subtle
visual differences between disease types.

The dataset includes class-imbalanced distributions,
which reflect real-world conditions and require models to
generalize effectively across both common and less
frequent disease types. During preprocessing, all images
were scaled to 224x224 pixels to maintain uniformity
across models. Given its clean labelling and high quality,
the dataset is widely used for benchmarking classification
algorithms in plant pathology.
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Transfer Learning-Based Models

In this study, transfer learning is utilized to improve
the performance of DL models for classifying tomato leaf
diseases. By using deep CNNs pre-trained on large-scale
datasets such as ImageNet, transfer learning substantially
decreases both training time and reliance on extensive
labelled data (Arnob et al., 2025). Models such as
ResNet50, Inception V3, and VGG16, are fine-tuned on
the tomato leaf dataset to leverage their hierarchical
feature extraction capabilities. These architectures,
originally trained to classify over a thousand general
object categories, are repurposed here for the more
domain-specific task of plant disease detection.

Transfer learning offers several advantages in this
context:

e  Utilization of pre-learned weights from large datasets

e Improved generalization even with limited labelled
agricultural data

e  Faster convergence during training

e The architecture-specific adaptations for this study
are described below

VGG16

VGG16 (Simonyan and Zisserman, 2015) is a widely
recognized deep convolutional network developed by the
VGG group at the University of Oxford. As illustrated in
Figure 1, the model comprises 13 convolutional layers
and 3 fully connected layers, making up a total of 16

convl

conv2

conv4

56 x 56 x 256

LA
11/x 112 x 128

LA
224 x 224 x 64

28 x 28 x 512

weight layers. Each convolutional layer uses a fixed 3x3
kernel with stride 1 and padding 1, followed by max-
pooling layers with a 2x2 window and stride 2 for spatial
down sampling. This uniform architecture simplifies
implementation while enabling deep hierarchical feature
learning.

In our experiments, the top (classification) layers of
VGG16 were replaced to suit the 10-class classification
task, and the convolutional base was fine-tuned on the
tomato leaf dataset.

Inception V3

Inception V3 (Szegedy et al., 2016) is an advanced
CNN architecture from the GoogleNet family, optimized
for both accuracy and computational efficiency. It
incorporates Inception modules that apply multiple
convolutional filters—1x1, 3x3, and 5x5 in parallel,
followed by concatenation. This architecture enables the
model to simultaneously learn features at multiple scales,
improving its capacity to capture both fine-grained and
coarse patterns in images.

The network described in Figure 2 also employs
factorized convolutions (e.g., 3x3 into two 1x3 + 3x1)
and batch normalization, which collectively reduce the
number of parameters and stabilize training. With over 48
layers, Inception V3 is particularly effective for complex
image classification tasks.

In this study, the final layers of Inception V3 were
replaced with a task-specific head, while the rest of the
network was fine-tuned using the tomato disease dataset.
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Fig. 1: VGG16 Architecture Overview



Sunil K. Vithalani and Vipul K. Dabhi / Journal of Computer Science 2026, 22 (1): 47.60

DOI: 10.3844/jcssp.2026.47.60

Stage 1
§ F(x) § F(x)+ x
Fig. 2: Illustration of Inception V3 Architecture
’f_\ ’( b 7~ N\
f / I
gr— e fr— Jr—
o Q - o )
o o~ N-3 o
& 2 4 23y bk 282 SHE
> - ORCR R = °
g & ¢ EEg £ & & £E g £ &g g S
" = = CC] 200 28 = = = < =
s S s ©OJ »[| SSOS || 5SS > 585—»:—»;
Elal sl <le ll 232% 2B e g IR
a L v o~ ) He - e 4 - Ae b
o @ ® Lal -~ @
N S 3 ¥ § &
w w »n n
\ ) V, \ J/
\. . v
— —— Ry
a ) ) N
] “ w v
Fig. 3: ResNet50 Architecture
ResNet50

ResNet50 (He et al., 2016) is a robust deep CNN
architecture that incorporates residual learning, a
technique designed to alleviate the vanishing gradient
problem in deep networks. It does so through skip
(shortcut) connections, which allow the model to learn
identity mappings alongside the main transformation.
This makes the network easier to optimize, even at depths
of 50 layers or more.

The model consists of convolutional blocks and
identity blocks, each featuring batch normalization and
ReLU activations as presented in Figure 3. The residual
connections help maintain gradient flow and enable
efficient training of deeper networks, making ResNet50
highly suitable for our task.
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Vision Transformer (ViT)

The ViT model, introduced by Dosovitskiy et al.
(2021), signifies a noteworthy advancement in the
application of transformer architectures to computer
vision tasks. Inspired by the success of transformers in
Natural Language Processing (NLP), ViT adapts the same
principles for image classification, fundamentally
differing from traditional CNNs (Simonyan and
Zisserman, 2015) that count on localized convolutional
operations to hierarchically extract spatial features. ViT
departs from this paradigm by treating an image as a
sequence of fixed-size patches, analogous to word tokens
in text, and processes them using a standard transformer
encoder architecture.
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As illustrated in Figure 4, the image classification
pipeline in ViT begins by dividing an input image having
H X W x C dimensions into non-overlapping patches of
size P X P. Each of these image patches is flattened into
a vector in one dimension and subsequently projected
into a D-dimensional embedding space using a trainable
linear projection. These vectors, called patch
embeddings, are used as the input sequence for the
transformer encoder.

To retain spatial information which is otherwise lost
in the flattening process ViT incorporates positional
encodings into the patch embeddings. These encodings
enable the model to learn the spatial relationships
among patches, thereby preserving the global structure
of the image. Additionally, a learnable classification
token ([CLS]) is prepended to the sequence. This token
is designed to aggregate contextual information from
all patches during transformer processing and is
ultimately used for generating the final classification
prediction.

These embeddings are then input to a standard
Transformer encoder for further processing, which
involves multiple layers, each comprising the following
key mechanisms:

Multi-Head Self-Attention (MSA): Enables the
model to capture both local and global dependencies
by computing attention scores across all patch pairs
Feedforward Neural Network (FFN): Applies non-
linear transformations to the output of the MSA
module, enhancing representational power
Residual connections and layer normalization are
employed throughout the encoder to facilitate stable
training and improve convergence

Yision Transformer (ViT)

After processing by the Transformer encoder, the
output corresponding to the ([CLS]) token is fed into a
fully connected classification head. This final layer
computes class probabilities via a softmax activation,
enabling the model to perform image classification.

Development of a Lightweight CNN

While transfer learning-based models offer robust
performance, their high computational complexity and
large parameter count make them resource-intensive. To
address this limitation, a lightweight CNN architecture is
designed specifically for TLDC. Inspired by existing
shallow CNN architectures, this model consists of four
convolutional layers, each followed by max-pooling
layers to reduce feature dimensionality while preserving
essential information.

The lightweight CNN architecture employs batch
normalization to standardize inputs and accelerate
convergence. Dropout is used to reduce overfitting by
randomly deactivating neurons, while the final layer uses
softmax for multi-class classification.

Architecture of the Customized CNN

The proposed lightweight CNN architecture,
detailed in Table 2, includes convolutional layers for
feature  extraction, max-pooling layers for
dimensionality reduction, and a fully connected layer
for classification.

The  proposed methodology  provides a
comprehensive framework for TLDC by leveraging
pre-trained DL models through transfer learning and
introducing a computationally efficient customized
CNN architecture.
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Fig. 4: Vision Transformer architecture
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Table 2: Architecture of the Customized CNN

Layer Type Kernel Size No. of Kernels Output Shape Parameters
Input Layer - - (224,224,3) 0

Convl 3x3 16 (224,224,16) 448
MaxPooll 2x2 - (112,112,16) 0

Conv2 3x3 32 (112,112,32) 4,640
MaxPool2 2x2 - (56,56,32) 0

Conv3 3x3 64 (56,56,64) 18,496
MaxPool3 2x2 - (28,28,64) 0

Conv4 3x3 128 (28,28,128) 73,856
MaxPool4 2x2 - (14,14,128) 0

Flatten - - (1,1,25088) 0

Dense-1 - - (1,1,512) 12,845,568
Batch Normalization - - (1,1,512) 2,048
Output Layer - - (1,1,10) 5,130
Total Parameters - - - 12,950,186
Trainable Parameters - - - 12,949,162
Non-Trainable Parameters - - - 1,024

Experimental Setup

This section outlines the experimental framework
adopted for training and evaluating DL models in the task
of TLDC. All experiments were conducted on the Kaggle
cloud platform using the PlantVillage Tomato Leaf
dataset, which comprises a total of 14,531 labeled images,
categorized into classes including nine disease categories
and one healthy.

The dataset was partitioned into training and testing
sets using an 80:20 split, resulting in 11,624 images for
training and 2,907 for testing. To further improve model
generalization and mitigate overfitting, 10% of the
training set (approximately 1,162 images) was reserved as
a validation set.

For computational efficiency, an NVIDIA Tesla P100
GPU was utilized to train and fine-tune all DL models.
The study employed transfer learning with three pre-
trained convolutional architectures Inception V3,
VGG16, and ResNet50 as well as a custom lightweight
CNN  developed to suit resource-constrained
environments.

In addition to CNN-based models, the Vision
Transformer (ViT) architecture was evaluated using two
training strategies: training from scratch using only the
PlantVillage dataset, and fine-tuning a ViT model pre-
trained on ImageNet-21k. All models were trained under
a consistent set of hyperparameters and preprocessing
steps, summarized in Table 2. Standard metrics, including
accuracy, precision, recall, and F1-score, were used to
evaluate the models for a reliable comparison.

Model Training and Fine-Tuning

The VGG16 model was adapted using a transfer
learning approach, retaining only the final layer as
trainable while initializing the remaining layers with
weights from the ImageNet-pretrained model. A 10-node
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dense layer with SoftMax activation was included for the
10-class classification task.

For the Inception V3 model, the original top layer was
replaced with two fully connected dense layers, a dropout
layer with a rate of 0.2, and a final dense output layer. In
the case of ResNet50, a global average pooling layer was
added, followed by two dense layers containing 1024 and
10 neurons, respectively.

To assess the effectiveness of the Vision Transformer
(ViT) architecture for TLDC, two training strategies were
employed. In the first, the ViT model was trained from
scratch on the PlantVillage dataset. In the second, a pre-
trained ViT model was fine-tuned on the same dataset.
Both strategies used the same hyperparameters outlined in
Table 3.

Additionally, the customized lightweight CNN model,
whose architecture is presented in Table 2, was trained
using the same hyperparameters of Table 4 as the pre-
trained models.

Table 3: Hyperparameters and Model Specifications for Vision

Transformer
Parameter Value
Patch Size 16 x 16
Optimizer Adam
Learning Rate 3x107
Loss Function Cross Entropy
Number of Epochs 15

Table 4: Hyperparameters and Model
lightweight CNN Model

Specifications for

Hyperparameter Value
Optimizer Adam
Learning Rate 0.001

Loss Function Categorical Cross-Entropy

Dataset Tomato Leaf Dataset
No. of Epochs 15
Batch Size 32
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Table 5 presents a comparative summary of the five
DL Architectures employed in this study. All models were
consistent to an input resolution of 224x224 pixels to
ensure fair evaluation. As observed, VGG16 possesses the
highest number of parameters (138.4 M) owing to its deep
stack of convolutional and fully connected layers, while
the proposed Lightweight CNN is the most efficient, with

Table 5: Comparison of Model Architectures

only 12.95 M parameters and a shallow architecture
comprising just four layers. Inception V3 and ResNet50
maintain a balance between depth and parameter
efficiency, with 48 and 50 layers, respectively. The Vision
Transformer (ViT-Base) model introduces a transformer-
based approach with 12 encoder layers and 86.6M
parameters.

Model Input Size Parameters No. of Layers

[M1] VGG16 224x224 138.4M 16

[M2] Inception V3 224x224 23.9M 48

[M3] ResNet50 224x224 25.6M 50

[M4] Lightweight CNN 224x224 12.95M 4

[M5] Vision Transformer (ViT-Base) 224x224 86.6 M 12 Transformer Encoder Layers

Results and Discussion

The experimental results obtained from the four DL
models are presented. Model performance was assessed
using loss metrics, accuracy, F1-score, precision, and recall,
with graphical representations illustrating the effectiveness
of each model in classifying tomato leaf diseases.

Training and Validation Accuracy

Figure 5 illustrates the wvalidation and training
accuracy of all four models. The lightweight CNN,
VGG16, and Inception V3 models achieve over 95%
training accuracy and more than 85% validation accuracy.
The VGG16 model demonstrates slightly higher
validation accuracy compared to the other models,
making it a strong candidate for TLDC. In contrast, the
ResNet50 model exhibits relatively lower performance
due to its deeper architecture, which requires extensive
training to achieve optimal accuracy.

Fine-tuning the ViT model yielded promising results

Training Accuracy for VGG16,InceptionV3,ResNet50 and Lightweight CNN
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within 15 epochs, achieving classification accuracy
comparable to that of CNNs. The -corresponding
validation and training accuracy, along with loss curves,
for this experiment are illustrated in Figure 6.

Confusion Matrix Analysis

The confusion matrices for all four models, presented
in Figure 7, provide a detailed breakdown of classification
performance across the 10 disease classes. The results
indicate that the VGG16 and lightweight CNN models
exhibit strong classification performance, correctly
classifying most classes with high confidence. The
Inception V3 model also performs well but demonstrates
slight misclassifications in some classes. ResNet50, on
the other hand, exhibits noticeable misclassifications,
particularly in classes with visually similar leaf
symptoms, which affects its overall performance.

The confusion matrix for the test dataset, obtained
using the fine-tuned ViT approach, is presented in Fig. 8.
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Fig. 5: Training and Validation Accuracy Comparison
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Table 6: Performance Evaluation Metrics
Model Accuracy Precision Recall F1-Score
[M1] VGGI6 93.1% 92.8% 92.5% 92.7%
[M2] Inception V3 88.7% 88.3% 87.9% 88.1%
[M3] ResNet50 84.5% 83.9% 83.2% 83.6%
[M4] Lightweight CNN 92.3% 92.1% 91.8% 92.0%
[M5] Vision Transformer (ViT-Base) 95.6% 95.52% 95.5% 95.4%
Performance Metrics Evaluation Discussion

Comprehensive evaluation of the models was carried
out by calculating accuracy, precision, recall, and F1-
scores. The results, presented in Table 6, reveal that the
ViT base model achieved the highest overall classification
accuracy and Fl-score, outperforming all other
architectures considered in the study. It demonstrated
superior learning capability, especially in distinguishing
between visually similar leaf disease classes, compared to
deeper CNN-based models like VGG16, ResNet50, and
Inception V3. Additionally, the lightweight CNN
architecture showed comparable accuracy while
maintaining a minimal number of parameters, making it
highly suitable for deployment in computationally
constrained settings.
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This study explored the effectiveness of the ViT
architecture for TLDC using the PlantVillage dataset,
comparing both a scratch-trained model and a fine-
tuned version against established CNN-based
architectures. The experimental outcomes clearly
indicate that the ViT model, when fine-tuned on
domain-specific =~ data, outperforms traditional
convolutional approaches in terms of classification
accuracy and F1-score.

Training ViT from scratch on the relatively small
dataset resulted in severe underfitting and poor
performance, reaffirming the model’s reliance on
large-scale data and high computational resources for
effective convergence. Conversely, the fine-tuned ViT
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model demonstrated rapid and stable convergence,
achieving the highest overall accuracy and
generalization ability among all models tested. This
highlights the importance of transfer learning in
transformer-based architectures, particularly for tasks
with limited labeled data.

When compared to deep CNN models such as
ResNet50, VGG16, and Inception V3, the fine-tuned
ViT model consistently exhibited superior performance
across all evaluation metrics. This suggests that ViT’s
self-attention mechanism 1is highly effective in
capturing global contextual features, which is
particularly advantageous for distinguishing subtle
inter-class variations in leaf disease patterns.

Moreover, the lightweight CNN architecture,
despite its simplicity and significantly lower parameter
count, achieved competitive results. Its performance
highlights the potential for deploying efficient DL
solutions in resource-constrained or edge-computing
environments, where computational efficiency is as
critical as accuracy.

Overall, the findings of this study not only
emphasize the advantages of Vision Transformers in
plant disease classification but also underline the trade-
offs between model complexity and deployment
feasibility. The choice between transformer-based and
lightweight CNN architectures can thus be guided by
application-specific requirements such as accuracy,
latency, and computational constraints.

Conclusion

This research presented a comparative evaluation of
the ViT and several CNN architectures for the task of
TLDC using the PlantVillage dataset. Among the
evaluated models, the fine-tuned ViT base model
achieved the highest classification accuracy of 95.53%,
outperforming established CNN architectures such as
VGG16 (91.32%), ResNet50 (92.85%), and Inception V3
(93.67%). These results demonstrate the strong
generalization capability of ViT when initialized with pre-
trained weights, especially in capturing global context
from image patches. In contrast, training ViT from scratch
resulted in an accuracy below 10%, underscoring the data-
hungry nature of transformer-based models and the
necessity of transfer learning for small-scale datasets.

Furthermore, the lightweight CNN model achieved an
accuracy of 93.12%, offering a competitive alternative
with minimal computational requirements. This positions
it as a viable candidate for real-time disease detection
applications in low-resource environments, such as
mobile or embedded agricultural systems.

The findings affirm that transformer-based models,
particularly when fine-tuned, hold significant promise for
high-accuracy plant disease detection, while lightweight
CNNs remain practical for field deployment scenarios.
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Future Scope

Despite the promising results achieved in this study,
several research avenues remain open for exploration:

e Expansion to Larger and Diverse Datasets: Training
on broader, multi-environment datasets will enhance
model robustness to real-world variations in lighting,
leaf orientation, and disease severity

e Deployment Optimization: Research into model
compression techniques (e.g., quantization, pruning,
distillation) can help make ViT models feasible for
real-time use on edge devices

e Cross-Crop and Multi-Disease Detection: Future
work can explore scalable models capable of
diagnosing multiple diseases across different crop
species using unified frameworks

e  Explainable Al Integration: Employing interpretability
techniques such as attention heatmaps or saliency maps
can improve end-user trust by making model decisions
transparent to farmers and agronomists

o JoT-Based Smart Agriculture Systems: Integration of
trained models into loT-based monitoring platforms can
enable automated disease surveillance and decision-
making support systems for precision farming

By addressing these challenges, future research can
significantly enhance the scalability, robustness, and real-
world applicability of DL models for plant disease detection.
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