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Abstract: Early disease detection in plants is essential for sustaining 

agricultural yield and guaranteeing food security. A comparative analysis of 

transformer-based and convolutional based deep learning models for 

classifying tomato leaf diseases is presented. Specifically, it examines the 

performance of a Vision Transformer (ViT), tested both in a form of scratch 

training setup and through transfer learning, against well-known CNN 

architectures such as Inception V3, VGG16, ResNet50, and a custom-

designed lightweight CNN.  This is one of the few studies to rigorously 

benchmark ViT against CNNs in the context of agricultural disease detection 

using the PlantVillage dataset. The fine-tuned ViT model delivered the best 

results, achieving an accuracy of 95.53%, significantly outperforming all 

CNN counterparts. The lightweight CNN demonstrated strong performance 

with 93.12% accuracy, while offering clear benefits in terms of smaller 

model size and reduced computational cost making it well-suited for on-

device or edge-level applications. Conversely, the ViT model trained from 

scratch underperformed due to dataset constraints, reinforcing the necessity 

of transfer learning for transformer architectures. Evaluation metrics 

included recall, accuracy, F1-score, and precision, which collectively 

illustrated the trade-off between high-capacity models and deployment 

feasibility. The main contribution of this work lies in introducing 

transformer-based learning into the plant pathology domain and the 

presentation of a scalable, low-computation alternative via lightweight 

CNNs. Future directions involve enlarging the dataset, integrating 

explainable AI techniques, and enabling real-time applications for precision 

agriculture. 
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Introduction 

Tomatoes (Solanum lycopersicum) are among the 

most widely cultivated horticultural crops globally, 

playing a critical role in food security and agricultural 

economies. According to Food and Agriculture 

Organization (FAO) statistics, global production 

surpasses 180 million tonnes annually (FAOSTAT, 

2025), reflecting its importance in dietary consumption, 

processed foods, and industrial applications. Beyond their 

nutritional benefits, tomatoes are an essential income 

source for millions of smallholder and commercial 

farmers across diverse agro-climatic zones 

(Schreinemachers et al., 2018). Despite their significance, 

tomato crops are highly vulnerable to a wide array of 

bacterial, fungal, and viral diseases, which severely 

reduce yield quality and quantity (Manjunatha et al., 

2025). 

Among the most damaging pathogens are Septoria 

Leaf Spot, Late Blight, Early Blight, and Tomato Mosaic 

Virus each posing distinct diagnostic and control 

challenges (Alzahrani and Alsaade, 2023). Improper or 

delayed identification often results in the indiscriminate 

application of chemical treatments, such as fungicides and 

insecticides, which contribute to rising production costs, 

environmental degradation, and the emergence of 

pesticide-resistant pathogen strains (Sakkarvarthi et al., 

2022). These conventional approaches not only 

compromise food safety but also hinder sustainable 

farming practices. 
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Conventional disease monitoring predominantly relies 

heavily on human visual inspection, which is labor-

intensive, subjective, and prone to error especially in early 

stages where symptoms may be subtle or overlap across 

multiple diseases (Prajapati et al., 2017). Moreover, 

manual methods lack scalability, making them unsuitable 

for large-scale agricultural operations. These limitations 

highlight the urgent requirement for automated, accurate, 

and field-deployable disease detection systems. 

The emergence of Artificial Intelligence (AI) and, in 

particular, DL has revolutionized the domain of 

automated plant disease detection. Convolutional Neural 

Networks (CNNs) achieved remarkable success in 

computer vision by learning hierarchical representations 

directly from raw image data (Li et al., 2021). While 

CNNs such as VGG16 (Simonyan and Zisserman, 

2015) , Inception V3 (Szegedy et al., 2016), and 

ResNet50 (He et al., 2016) have demonstrated strong 

classification performance but are computationally 

intensive due to their depth and parameter complexity. 

To address this, our study introduces a comparative 

analysis involving: 

 

1. Fine-tuned CNN models: VGG16, Inception V3, and 

ResNet50 

2. A custom lightweight CNN with significantly fewer 

parameters 

3. A transformer-based approach using the ViT-Base 

model (Dosovitskiy et al., 2021) 

 

Unlike CNNs, the ViT divides an image into fixed-size 

patches and processes them using transformer encoders, 

enabling the capture of long-range dependencies and 

global contextual features often missed by conventional 

convolutional filters. 

Literature Review 

Crop productivity is strongly influenced by plant 

diseases, which can be broadly categorized as biotic 

(caused by pathogens such as fungi, bacteria, and viruses) 

or abiotic (resulting from environmental stresses like 

nutrient deficiencies, drought, or pollutants). Early and 

reliable detection is therefore critical for minimizing yield 

losses and ensuring sustainable production (Li et al., 

2021). 

DL approaches for plant disease recognition typically 

fall into three main categories: image classification, object 

detection, and semantic segmentation. Classification-

based models assign entire images to predefined 

categories and are widely applied for disease 

presence/absence detection. CNN-based architectures 

such as Inception V3, and VGG16 have been particularly 

effective in extracting discriminative features from leaf 

images (Li et al., 2021). Object detection-based 

techniques not only classify but also localize affected 

areas using bounding boxes. While two-stage detectors 

such as R-CNN (Girshick et al., 2014) and Faster R-CNN 

(Ren et al., 2017) offer high accuracy, they are 

computationally expensive (Du et al., 2020). In contrast, 

one-stage detectors like YOLO (Redmon et al., 2016) and 

SSD (Liu et al., 2016) provide real-time detection 

capabilities at the cost of reduced accuracy. 

Segmentation-based approaches, which highlight the 

diseased regions at the pixel level, have been explored 

using DL models such as FCN (Long et al., 2015) and 

Mask R-CNN (Bondre and Patil, 2024), allowing precise 

identification of affected areas within the plant structure. 

Several studies have investigated different CNN and 

other DL models for crop disease identification. Amara et al. 

(2017) employed the LeNet-CNN model to classify 

banana leaf diseases using a dataset from PlantVillage, 

achieving an accuracy of 99.72% by training the model on 

3,700 resized images. Similarly, (Guerrero-Ibañez and 

Reyes-Muñoz, 2023) proposed a four-layer CNN for 

tomato leaf disease recognition, achieving 99.64% 

accuracy on a dataset combining Plant Village and field 

images, enhanced through GAN-based augmentation and 

K-fold cross-validation. (Trivedi et al., 2021) 

demonstrated an accuracy of 98.49% using an eight-layer 

deep neural network fine-tuned on the PlantVillage 

dataset for early tomato disease detection. Wang et al. 

(2017) explored DL for apple leaf disease severity 

classification and trained VGG19, VGG16, ResNet50, 

and Inception V3, models with transfer learning, 

achieving 90.4% accuracy with VGG16 on a dataset 

containing 17,640 images. Kerkech et al. (2020) 

introduced an innovative approach using UAV-based 

vineyard images captured with RGB and infrared 

cameras. They segmented the images using separate 

SegNet models for each modality and achieved a 

classification accuracy of 95.02% by implementing a 

fusion strategy that combined RGB and infrared data. 

Karthik et al. (2020) investigated the effectiveness of 

traditional CNNs, residual CNNs, and attention-based 

residual CNNs for tomato leaf disease detection using an 

extensive dataset from Plant Village. Their dataset, 

augmented to 95,999 images, was validated using a five-

fold cross-validation strategy, resulting in an accuracy of 

98% for the attention-based residual CNN model, which 

effectively focused on disease-relevant image features. 

Picon et al. (2019), explored both single and multi-crop 

classification models using images captured in real field 

conditions via mobile devices. Their dataset consisted of 

121,955 images spanning several crops, including wheat, 

rapeseed, corn, rice, and barley. By employing ResNet50, 

they compared independent crop-specific models against 

a multi-crop classification model and found that the latter 

slightly outperformed single-crop models, achieving an 
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accuracy of 98%. Their results further suggested that 

incorporating crop-type information during training 

improved model generalization across different plant 

species and environmental conditions. 

While these studies demonstrate significant 

advancements in plant disease classification, several 

research gaps persist. A primary limitation is the lack of 

generalization across real-world agricultural 

environments. Many models are trained on controlled 

datasets like Plant Village (Hughes and Salathe, 2015), 

which contain high-resolution, controlled images. 

However, these models often struggle to maintain high 

accuracy when deployed in real-world conditions, where 

lighting variations, occlusions, and background noise 

introduce significant challenges. Multi-disease detection 

remains underexplored, as most studies assume only one 

disease per sample, despite the common occurrence of co-

infections (Kamilaris and Prenafeta-Boldú, 2018). 

Furthermore, most high-accuracy models rely on 

computationally expensive architectures, making them 

unsuitable for distribution on low-power devices such as 

UAVs and mobile phones. The development of 

lightweight, optimized models that maintain high 

performance while operating on low resource devices is 

essential for practical applications in precision agriculture 

(Peyal et al., 2023). The lack of transparency in DL 

models creates significant challenges for their 

interpretability and trust. To support informed decisions 

in disease management and pesticide use, farmers and 

agronomists need explainable AI methods that clarify 

model predictions (Samek et al., 2017). Moreover, while 

some studies have incorporated RGB and infrared 

imaging (Kerkech et al., 2020), the potential of 

multispectral and hyperspectral imaging remains 

underutilized. These advanced imaging modalities could 

enhance disease differentiation by capturing spectral 

signatures beyond the visible range, enabling more precise 

identification of disease symptoms (Arnal Barbedo, 2019). 

Another challenge in plant disease classification is the 

dependency on large amounts of labelled training data. 

Many existing models require extensive datasets, which 

may not be available for all crops or disease types. 

Transfer learning and data augmentation techniques, such 

as GAN-based synthetic image generation (Guerrero-

Ibañez and Reyes-Muñoz, 2023), can be leveraged to 

address this limitation. Future research should explore 

cross-domain adaptation strategies that allow models trained 

on well-studied crops like tomatoes to be fine-tuned for less-

documented crops with limited available data. 

Although DL has greatly enhanced accuracy and 

efficiency of plant disease classification, challenges related 

to generalization, multi-disease detection, computational 

efficiency, interpretability, and data availability remain 

unresolved. Overcoming these challenges is crucial to 

realizing the practical use of DL models in precision 

agriculture, thereby enhancing crop health monitoring and 

promoting sustainable farming practices. 

Comparative Analysis 

Table 1 summarizes key studies on plant disease 

detection with deep learning.

 

Table 1: Comparison of Deep Learning Approaches for Plant Disease Detection 
Study Model Used Dataset Task Type Accuracy (%) Key Findings Limitations 

(Amara et al., 2017) LeNet-CNN PlantVillage 

(Banana leaves) 

Classification 99.72 Achieved high 

accuracy for banana 
leaf diseases 

Limited dataset, 

lacks real-field 
validation 

(Guerrero-Ibañez 

and Reyes-Muñoz, 
2023) 

4-layer CNN + 

GAN-based 
augmentation 

PlantVillage + 

Field Images 
(Tomato) 

Classification 99.64 Combined real-world 

and synthetic data, 
preventing overfitting 

Small model size 

but high accuracy; 
lacks multi-class 

detection 

(Trivedi et al., 
2021)  

8-layer DNN PlantVillage 
(Tomato) 

Classification 98.49 Early tomato disease 
detection with deep 

learning 

Does not 
generalize well to 

real-world 

conditions 
(Wang et al., 2017) VGG16, 

VGG19, 

Inception V3, 
ResNet50 

PlantVillage 

(Apple leaves) 

Classification 90.4 (VGG16) Fine-tuned transfer 

learning models for 

apple leaf disease 

High dependency 

on dataset, lacks 

multi-disease 
classification 

(Kerkech et al., 

2020) 

SegNet (RGB + 

Infrared) 

UAV-based 

Vineyard Dataset 

Segmentation 95.02 Utilized RGB and 

infrared fusion for 
improved detection 

Computationally 

expensive for real-
time field 

deployment 

(Karthik et al., 
2020) 

CNN, Residual 
CNN, 

Attention-

Based CNN 

PlantVillage 
(Tomato) 

Classification 98 Attention mechanism 
improved feature 

selection 

High training time 
and data 

augmentation 

required 
(Picon et al., 2019) ResNet50 Multi-Crop 

Dataset (121,955 
images) 

Classification 98 Multi-crop model 

improved 
generalization 

Requires crop-type 

information for 
best performance 
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This comparative study highlights that while CNN-

based approaches have demonstrated high classification 

accuracy, they often suffer from poor generalization in 

real-world conditions. Hybrid approaches that integrate 

multiple imaging modalities (e.g., RGB and infrared) 

show potential for improved performance but remain 

computationally expensive. Attention mechanisms and 

generative models such as GANs offer promising 

solutions to data scarcity but require extensive 

computational resources. Addressing these research gaps 

will be crucial in advancing DL applications for robust 

and scalable plant disease detection. 

Research Gaps 

Despite the developments in deep learning-based plant 

disease identification, several critical research gaps 

remain unaddressed: 

 

• Limited Generalization to Real-World Conditions: 

Most existing models are trained on controlled 

datasets such as PlantVillage, which contain uniform 

lighting and background conditions. These models 

often struggle when deployed in real-field conditions 

with varying illumination, occlusions, and 

environmental noise (Ahmad et al., 2023; Picon et al., 

2019) 

• Lack of Multi-Disease Classification Models: Most 

existing studies concentrate on identifying a single 

disease in each image, while in real-world 

agricultural settings, multiple diseases may 

simultaneously affect the same plant. Developing 

multi-label classification models remains a challenge 

(Demilie, 2024) 

• High Computational Costs and Resource Constraints: 

Numerous DL architectures demand substantial 

computational resources, limiting their suitability for 

mobile or edge device deployment. There is a need 

for lightweight and efficient models optimized for 

real-time disease detection in low-resource 

environments (Peyal et al., 2023) 

• Limited Interpretability and Explainability: DL 

models function as "black boxes," making it difficult 

for farmers and agricultural experts to trust and 

understand predictions. Explainable AI (XAI) 

techniques must be integrated to improve model 

transparency (Samek et al., 2017) 

• Underutilization of Advanced Imaging Modalities: 

While some studies incorporate RGB and infrared 

imaging, the potential of hyperspectral and multispectral 

imaging for precise disease differentiation remains 

underexplored (Kerkech et al., 2020) 

• Dependence on Large Labeled Datasets: Many state-

of-the-art models rely on large labeled datasets, 

which are often unavailable for certain crops and 

diseases. Transfer learning, synthetic data generation, 

and domain adaptation techniques need further 

exploration to mitigate this issue (Guerrero-Ibañez 

and Reyes-Muñoz, 2023) 

• Inadequate Studies on Disease Progression and 

Severity Estimation: Most existing studies focus on 

disease presence or absence without assessing 

disease severity levels. Incorporating severity 

estimation models would allow farmers to take timely 

preventive measures (Wang et al., 2017) 

 

Methods 

This section outlines the dataset and model 

development strategies employed for TLDC. The 

PlantVillage dataset served as the benchmark for 

assessing DL models, with transfer learning employed to 

fine-tune pre-trained CNN architectures including 

Inception V3, ResNet50, and VGG16. A custom 

lightweight Convolutional Neural Network (CNN) was 

also designed to offer a low-complexity alternative 

suitable for real-time applications. 

In addition to CNNs, this study investigates the Vision 

Transformer (ViT) model under two training strategies: 

developing models from scratch and refining pre-trained 

ones. The inclusion of ViT introduces a transformer-based 

learning paradigm to the plant disease classification task. 

A comparative evaluation of all models, focusing on 

accuracy, generalization ability, and computational 

efficiency, is presented in the subsequent sections. 

Dataset 

The experiments in this study are based on the 

PlantVillage Tomato Leaf Dataset, a publicly available 

benchmark curated for plant disease classification tasks. 

The dataset comprises 14,531 high-resolution RGB 

images of tomato leaves, divided into ten classes: one 

Healthy class and nine disease categories, including Late 

Blight, Tomato Mosaic Virus, Septoria Leaf Spot, Leaf 

Mold, Early Blight, Spider Mites, Target Spot, Bacterial 

Spot, and Tomato Yellow Leaf Curl Virus. 

Each image depicts a single leaf photographed under 

controlled lighting, usually against a uniform background, 

in accordance with the PlantVillage data collection 

protocol. This uniformity supports effective model 

training while still presenting challenges such as subtle 

visual differences between disease types. 

The dataset includes class-imbalanced distributions, 

which reflect real-world conditions and require models to 

generalize effectively across both common and less 

frequent disease types. During preprocessing, all images 

were scaled to 224×224 pixels to maintain uniformity 

across models. Given its clean labelling and high quality, 

the dataset is widely used for benchmarking classification 

algorithms in plant pathology. 
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Transfer Learning-Based Models 

In this study, transfer learning is utilized to improve 

the performance of DL models for classifying tomato leaf 

diseases. By using deep CNNs pre-trained on large-scale 

datasets such as ImageNet, transfer learning substantially 

decreases both training time and reliance on extensive 

labelled data (Arnob et al., 2025). Models such as 

ResNet50, Inception V3, and VGG16, are fine-tuned on 

the tomato leaf dataset to leverage their hierarchical 

feature extraction capabilities. These architectures, 

originally trained to classify over a thousand general 

object categories, are repurposed here for the more 

domain-specific task of plant disease detection. 

Transfer learning offers several advantages in this 

context: 

 

• Utilization of pre-learned weights from large datasets 

• Improved generalization even with limited labelled 

agricultural data 

• Faster convergence during training 

• The architecture-specific adaptations for this study 

are described below 

 

VGG16 

VGG16 (Simonyan and Zisserman, 2015) is a widely 

recognized deep convolutional network developed by the 

VGG group at the University of Oxford. As illustrated in 

Figure 1, the model comprises 13 convolutional layers 

and 3 fully connected layers, making up a total of 16 

weight layers. Each convolutional layer uses a fixed 3×3 

kernel with stride 1 and padding 1, followed by max-

pooling layers with a 2×2 window and stride 2 for spatial 

down sampling. This uniform architecture simplifies 

implementation while enabling deep hierarchical feature 

learning. 

In our experiments, the top (classification) layers of 

VGG16 were replaced to suit the 10-class classification 

task, and the convolutional base was fine-tuned on the 

tomato leaf dataset. 

Inception V3 

Inception V3 (Szegedy et al., 2016) is an advanced 

CNN architecture from the GoogleNet family, optimized 

for both accuracy and computational efficiency. It 

incorporates Inception modules that apply multiple 

convolutional filters—1×1, 3×3, and 5×5 in parallel, 

followed by concatenation. This architecture enables the 

model to simultaneously learn features at multiple scales, 

improving its capacity to capture both fine-grained and 

coarse patterns in images. 

The network described in Figure 2 also employs 

factorized convolutions (e.g., 3×3 into two 1×3 + 3×1) 

and batch normalization, which collectively reduce the 

number of parameters and stabilize training. With over 48 

layers, Inception V3 is particularly effective for complex 

image classification tasks. 

In this study, the final layers of Inception V3 were 

replaced with a task-specific head, while the rest of the 

network was fine-tuned using the tomato disease dataset. 

 

 

 

Fig. 1: VGG16 Architecture Overview  
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Fig. 2: Illustration of Inception V3 Architecture 

 

 
 

Fig. 3: ResNet50 Architecture 

 

ResNet50 

ResNet50 (He et al., 2016) is a robust deep CNN 

architecture that incorporates residual learning, a 

technique designed to alleviate the vanishing gradient 

problem in deep networks. It does so through skip 

(shortcut) connections, which allow the model to learn 

identity mappings alongside the main transformation. 

This makes the network easier to optimize, even at depths 

of 50 layers or more. 

The model consists of convolutional blocks and 

identity blocks, each featuring batch normalization and 

ReLU activations as presented in Figure 3. The residual 

connections help maintain gradient flow and enable 

efficient training of deeper networks, making ResNet50 

highly suitable for our task. 

Vision Transformer (ViT) 

The ViT model, introduced by Dosovitskiy et al. 

(2021),  signifies a noteworthy advancement in the 

application of transformer architectures to computer 

vision tasks. Inspired by the success of transformers in 

Natural Language Processing (NLP), ViT adapts the same 

principles for image classification, fundamentally 

differing from traditional CNNs (Simonyan and 

Zisserman, 2015) that count on localized convolutional 

operations to hierarchically extract spatial features. ViT 

departs from this paradigm by treating an image as a 

sequence of fixed-size patches, analogous to word tokens 

in text, and processes them using a standard transformer 

encoder architecture. 
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As illustrated in Figure 4, the image classification 

pipeline in ViT begins by dividing an input image having  

𝐻 ×𝑊 × 𝐶  dimensions into non-overlapping patches of 

size 𝑃 × 𝑃. Each of these image patches is flattened into 

a vector in one dimension and subsequently projected 

into a 𝐷-dimensional embedding space using a trainable 

linear projection. These vectors, called patch 

embeddings, are used as the input sequence for the 

transformer encoder. 

To retain spatial information which is otherwise lost 

in the flattening process ViT incorporates positional 

encodings into the patch embeddings. These encodings 

enable the model to learn the spatial relationships 

among patches, thereby preserving the global structure 

of the image. Additionally, a learnable classification 

token ([𝐶𝐿𝑆]) is prepended to the sequence. This token 

is designed to aggregate contextual information from 

all patches during transformer processing and is 

ultimately used for generating the final classification 

prediction. 

These embeddings are then input to a standard 

Transformer encoder for further processing, which 

involves multiple layers, each comprising the following 

key mechanisms: 

 

• Multi-Head Self-Attention (MSA): Enables the 

model to capture both local and global dependencies 

by computing attention scores across all patch pairs 

• Feedforward Neural Network (FFN): Applies non-

linear transformations to the output of the MSA 

module, enhancing representational power 

• Residual connections and layer normalization are 

employed throughout the encoder to facilitate stable 

training and improve convergence 

After processing by the Transformer encoder, the 

output corresponding to the ([𝐶𝐿𝑆]) token is fed into a 

fully connected classification head. This final layer 

computes class probabilities via a softmax activation, 

enabling the model to perform image classification. 

Development of a Lightweight CNN 

While transfer learning-based models offer robust 

performance, their high computational complexity and 

large parameter count make them resource-intensive. To 

address this limitation, a lightweight CNN architecture is 

designed specifically for TLDC. Inspired by existing 

shallow CNN architectures, this model consists of four 

convolutional layers, each followed by max-pooling 

layers to reduce feature dimensionality while preserving 

essential information. 

The lightweight CNN architecture employs batch 

normalization to standardize inputs and accelerate 

convergence. Dropout is used to reduce overfitting by 

randomly deactivating neurons, while the final layer uses 

softmax for multi-class classification. 

Architecture of the Customized CNN 

The proposed lightweight CNN architecture, 

detailed in Table 2, includes convolutional layers for 

feature extraction, max-pooling layers for 

dimensionality reduction, and a fully connected layer 

for classification. 

The proposed methodology provides a 

comprehensive framework for TLDC by leveraging 

pre-trained DL models through transfer learning and 

introducing a computationally efficient customized 

CNN architecture. 

 

 

 

Fig. 4: Vision Transformer architecture 
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Table 2: Architecture of the Customized CNN  

Layer Type Kernel Size No. of Kernels Output Shape Parameters 

Input Layer - - (224,224,3) 0 

Conv1 3x3 16 (224,224,16) 448 

MaxPool1 2x2 - (112,112,16) 0 

Conv2 3x3 32 (112,112,32) 4,640 

MaxPool2 2x2 - (56,56,32) 0 

Conv3 3x3 64 (56,56,64) 18,496 

MaxPool3 2x2 - (28,28,64) 0 

Conv4 3x3 128 (28,28,128) 73,856 

MaxPool4 2x2 - (14,14,128) 0 

Flatten - - (1,1,25088) 0 

Dense-1 - - (1,1,512) 12,845,568 

Batch Normalization - - (1,1,512) 2,048 

Output Layer - - (1,1,10) 5,130 

Total Parameters - - - 12,950,186 

Trainable Parameters - - - 12,949,162 

Non-Trainable Parameters - - - 1,024 

 

Experimental Setup 

This section outlines the experimental framework 

adopted for training and evaluating DL models in the task 

of TLDC. All experiments were conducted on the Kaggle 

cloud platform using the PlantVillage Tomato Leaf 

dataset, which comprises a total of 14,531 labeled images, 

categorized into classes including nine disease categories 

and one healthy. 

The dataset was partitioned into training and testing 

sets using an 80:20 split, resulting in 11,624 images for 

training and 2,907 for testing. To further improve model 

generalization and mitigate overfitting, 10% of the 

training set (approximately 1,162 images) was reserved as 

a validation set. 

For computational efficiency, an NVIDIA Tesla P100 

GPU was utilized to train and fine-tune all DL models. 

The study employed transfer learning with three pre-

trained convolutional architectures Inception V3, 

VGG16, and ResNet50 as well as a custom lightweight 

CNN developed to suit resource-constrained 

environments. 

In addition to CNN-based models, the Vision 

Transformer (ViT) architecture was evaluated using two 

training strategies: training from scratch using only the 

PlantVillage dataset, and fine-tuning a ViT model pre-

trained on ImageNet-21k. All models were trained under 

a consistent set of hyperparameters and preprocessing 

steps, summarized in Table 2. Standard metrics, including 

accuracy, precision, recall, and F1-score, were used to 

evaluate the models for a reliable comparison. 

Model Training and Fine-Tuning 

The VGG16 model was adapted using a transfer 

learning approach, retaining only the final layer as 

trainable while initializing the remaining layers with 

weights from the ImageNet-pretrained model. A 10-node 

dense layer with SoftMax activation was included for the 

10-class classification task. 

For the Inception V3 model, the original top layer was 

replaced with two fully connected dense layers, a dropout 

layer with a rate of 0.2, and a final dense output layer. In 

the case of ResNet50, a global average pooling layer was 

added, followed by two dense layers containing 1024 and 

10 neurons, respectively. 

To assess the effectiveness of the Vision Transformer 

(ViT) architecture for TLDC, two training strategies were 

employed. In the first, the ViT model was trained from 

scratch on the PlantVillage dataset. In the second, a pre-

trained ViT model was fine-tuned on the same dataset. 

Both strategies used the same hyperparameters outlined in 

Table 3. 
Additionally, the customized lightweight CNN model, 

whose architecture is presented in Table 2, was trained 

using the same hyperparameters of Table 4 as the pre-

trained models. 

 
Table 3: Hyperparameters and Model Specifications for Vision 

Transformer 

Parameter Value 

Patch Size 16 × 16 

Optimizer Adam 

Learning Rate 3 × 10⁻³ 

Loss Function Cross Entropy 

Number of Epochs 15 

 
Table 4: Hyperparameters and Model Specifications for 

lightweight CNN Model 

Hyperparameter Value 

Optimizer Adam 

Learning Rate 0.001 

Loss Function Categorical Cross-Entropy 

Dataset Tomato Leaf Dataset 

No. of Epochs 15 

Batch Size 32 
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Table 5 presents a comparative summary of the five 

DL Architectures employed in this study. All models were 

consistent to an input resolution of 224×224 pixels to 

ensure fair evaluation. As observed, VGG16 possesses the 

highest number of parameters (138.4 M) owing to its deep 

stack of convolutional and fully connected layers, while 

the proposed Lightweight CNN is the most efficient, with 

only 12.95 M parameters and a shallow architecture 

comprising just four layers. Inception V3 and ResNet50 

maintain a balance between depth and parameter 

efficiency, with 48 and 50 layers, respectively. The Vision 

Transformer (ViT-Base) model introduces a transformer-

based approach with 12 encoder layers and 86.6M 

parameters. 

 
Table 5: Comparison of Model Architectures 

Model Input Size Parameters No. of Layers 

[M1] VGG16 224x224 138.4M 16 

[M2] Inception V3 224x224 23.9M 48 

[M3] ResNet50 224x224 25.6M 50 

[M4] Lightweight CNN 224x224 12.95M 4 

[M5] Vision Transformer (ViT-Base) 224x224 86.6 M 12 Transformer Encoder Layers 

 

Results and Discussion  

The experimental results obtained from the four DL 

models are presented. Model performance was assessed 

using loss metrics, accuracy, F1-score, precision, and recall, 

with graphical representations illustrating the effectiveness 

of each model in classifying tomato leaf diseases. 

Training and Validation Accuracy 

Figure 5 illustrates the validation and training 

accuracy of all four models. The lightweight CNN, 

VGG16, and Inception V3 models achieve over 95% 

training accuracy and more than 85% validation accuracy. 

The VGG16 model demonstrates slightly higher 

validation accuracy compared to the other models, 

making it a strong candidate for TLDC. In contrast, the 

ResNet50 model exhibits relatively lower performance 

due to its deeper architecture, which requires extensive 

training to achieve optimal accuracy. 

Fine-tuning the ViT model yielded promising results 

within 15 epochs, achieving classification accuracy 

comparable to that of CNNs. The corresponding 

validation and training accuracy, along with loss curves, 

for this experiment are illustrated in Figure 6. 

Confusion Matrix Analysis 

The confusion matrices for all four models, presented 

in Figure 7, provide a detailed breakdown of classification 

performance across the 10 disease classes. The results 

indicate that the VGG16 and lightweight CNN models 

exhibit strong classification performance, correctly 

classifying most classes with high confidence. The 

Inception V3 model also performs well but demonstrates 

slight misclassifications in some classes. ResNet50, on 

the other hand, exhibits noticeable misclassifications, 

particularly in classes with visually similar leaf 

symptoms, which affects its overall performance. 

The confusion matrix for the test dataset, obtained 

using the fine-tuned ViT approach, is presented in Fig. 8. 

 

 

 

Fig. 5: Training and Validation Accuracy Comparison 
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Fig. 6: Training and Validation Accuracy Comparison for Fine Tuned ViT 

 

 
(a) VGG16 

 
(b) Inception v3 

 
(c) ResNet50 

 
(d) Lightweight CNN 

 

Fig. 7: Confusion Matrices of All Models 
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Fig. 8: Confusion Matrix of Finetuned ViT Model 

 
Table 6: Performance Evaluation Metrics 

Model Accuracy Precision Recall F1-Score 

[M1] VGG16 93.1% 92.8% 92.5% 92.7% 

[M2] Inception V3 88.7% 88.3% 87.9% 88.1% 

[M3] ResNet50 84.5% 83.9% 83.2% 83.6% 

[M4] Lightweight CNN 92.3% 92.1% 91.8% 92.0% 

[M5] Vision Transformer (ViT-Base) 95.6% 95.52%  95.5% 95.4% 

 

Performance Metrics Evaluation 

Comprehensive evaluation of the models was carried 

out by calculating accuracy, precision, recall, and F1-

scores. The results, presented in Table 6, reveal that the 

ViT base model achieved the highest overall classification 

accuracy and F1-score, outperforming all other 

architectures considered in the study. It demonstrated 

superior learning capability, especially in distinguishing 

between visually similar leaf disease classes, compared to 

deeper CNN-based models like VGG16, ResNet50, and 

Inception V3. Additionally, the lightweight CNN 

architecture showed comparable accuracy while 

maintaining a minimal number of parameters, making it 

highly suitable for deployment in computationally 

constrained settings. 

Discussion 

This study explored the effectiveness of the ViT 

architecture for TLDC using the PlantVillage dataset, 

comparing both a scratch-trained model and a fine-

tuned version against established CNN-based 

architectures. The experimental outcomes clearly 

indicate that the ViT model, when fine-tuned on 

domain-specific data, outperforms traditional 

convolutional approaches in terms of classification 

accuracy and F1-score. 

Training ViT from scratch on the relatively small 

dataset resulted in severe underfitting and poor 

performance, reaffirming the model’s reliance on 

large-scale data and high computational resources for 

effective convergence. Conversely, the fine-tuned ViT 
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model demonstrated rapid and stable convergence, 

achieving the highest overall accuracy and 

generalization ability among all models tested. This 

highlights the importance of transfer learning in 

transformer-based architectures, particularly for tasks 

with limited labeled data. 

When compared to deep CNN models such as 

ResNet50, VGG16, and Inception V3, the fine-tuned 

ViT model consistently exhibited superior performance 

across all evaluation metrics. This suggests that ViT’s 

self-attention mechanism is highly effective in 

capturing global contextual features, which is 

particularly advantageous for distinguishing subtle 

inter-class variations in leaf disease patterns. 

Moreover, the lightweight CNN architecture, 

despite its simplicity and significantly lower parameter 

count, achieved competitive results. Its performance 

highlights the potential for deploying efficient DL 

solutions in resource-constrained or edge-computing 

environments, where computational efficiency is as 

critical as accuracy. 

Overall, the findings of this study not only 

emphasize the advantages of Vision Transformers in 

plant disease classification but also underline the trade-

offs between model complexity and deployment 

feasibility. The choice between transformer-based and 

lightweight CNN architectures can thus be guided by 

application-specific requirements such as accuracy, 

latency, and computational constraints. 

Conclusion 

This research presented a comparative evaluation of 

the ViT and several CNN architectures for the task of 

TLDC using the PlantVillage dataset. Among the 

evaluated models, the fine-tuned ViT base model 

achieved the highest classification accuracy of 95.53%, 

outperforming established CNN architectures such as 

VGG16 (91.32%), ResNet50 (92.85%), and Inception V3 

(93.67%). These results demonstrate the strong 

generalization capability of ViT when initialized with pre-

trained weights, especially in capturing global context 

from image patches. In contrast, training ViT from scratch 

resulted in an accuracy below 10%, underscoring the data-

hungry nature of transformer-based models and the 

necessity of transfer learning for small-scale datasets. 

Furthermore, the lightweight CNN model achieved an 

accuracy of 93.12%, offering a competitive alternative 

with minimal computational requirements. This positions 

it as a viable candidate for real-time disease detection 

applications in low-resource environments, such as 

mobile or embedded agricultural systems. 

The findings affirm that transformer-based models, 

particularly when fine-tuned, hold significant promise for 

high-accuracy plant disease detection, while lightweight 

CNNs remain practical for field deployment scenarios. 

Future Scope 

Despite the promising results achieved in this study, 

several research avenues remain open for exploration: 
 

• Expansion to Larger and Diverse Datasets: Training 

on broader, multi-environment datasets will enhance 

model robustness to real-world variations in lighting, 

leaf orientation, and disease severity 

• Deployment Optimization: Research into model 

compression techniques (e.g., quantization, pruning, 

distillation) can help make ViT models feasible for 

real-time use on edge devices 

• Cross-Crop and Multi-Disease Detection: Future 

work can explore scalable models capable of 

diagnosing multiple diseases across different crop 

species using unified frameworks 

• Explainable AI Integration: Employing interpretability 

techniques such as attention heatmaps or saliency maps 

can improve end-user trust by making model decisions 

transparent to farmers and agronomists 

• IoT-Based Smart Agriculture Systems: Integration of 

trained models into IoT-based monitoring platforms can 

enable automated disease surveillance and decision-

making support systems for precision farming 
 

By addressing these challenges, future research can 

significantly enhance the scalability, robustness, and real-

world applicability of DL models for plant disease detection. 
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