

# Convergence of GenAI and RPA: A Digital Heaven in Supply Chain Optimization Process

Saurabh A. Pahune<sup>1</sup>, Zahid Akhtar<sup>2</sup>, Manoj Chandrasekharan<sup>3</sup>, Shipra Shivkumar Yadav<sup>4</sup> and Kamran Siddique<sup>5</sup>

<sup>1</sup>*Cardinal Health, Dublin, Ohio, United States*

<sup>2</sup>*Department of Electrical and Computer Engineering, State University of New York Polytechnic Institute, United States*

<sup>3</sup>*Independent Researcher, United States*

<sup>4</sup>*Department of Computer Science and Engineering, Marwadi University, India*

<sup>5</sup>*Department of Computer Science and Engineering, University of Alaska Anchorage, United States*

## Article history

Received: 17-01-2025

Revised: 02-06-2025

Accepted: 26-07-2025

## Corresponding Author:

Saurabh A. Pahune  
Cardinal Health, Dublin, Ohio,  
United States  
Email:  
saurabh.pahune@cardinalhealth.com

**Abstract:** One of the most groundbreaking advances in the field of intelligent automation is the merging of Generative Artificial Intelligence (GenAI) and Robotic Process Automation (RPA). This combination unlocks previously unachievable capabilities in automation. RPA (software bots) improves speed and operational efficiency by automating rule-based tasks, Standard Operating Procedures (SOPs), and repetitive workflows. At the same time, it minimizes manual labor and human errors. While, GenAI's advanced proficiencies in Natural Language Processing (NLP) with context, content creation, and smart decision-making make it well suited for tasks that require flexibility and adaptability. Leveraging the fusion of the two can empower greater improvements in the supply chain world. Overall, in the supply chain management workflow, this convergence drives automation to new heights and delivers the precision, and adaptability across the end-to-end process. This integration enables real-time forecasting of multiple level items to each item/eaches, case quantities, pallet load, inventory management optimization, demand forecasting, customer service and communication, logistics and transportation management, anomaly detection, damage detection, etc. in the supply chain process. This paper explores in brief the future potential of supply chain automation using the fusion of GenAI and RPA, along with practical applications, challenges, and future directions.

**Keywords:** Intelligent Automation, GenAI, RPA, Software Bots, SOPs, NLP, Supply Chain Management, Inventory Management Optimization, Logistics

## Introduction

Supply Chain Management (SCM) is a broad concept that has recently gone through a significant transformation, driven by the rapid advancement of technology (Garay-Rondero et al., 2019; Li and Zhao, 2024; Holloway, 2024). Using intelligent automation and various automation tools in the supply chain enables efficient and seamless business operations. During the COVID-19 pandemic, there was a major interruption in the supply chain due to reduced manual labor, which caused disruption and delays in supply chain operations (Mizrak, 2024; Shah et al., 2024). Most of the companies in COVID-19 era leveraged bot automation such as Robotic Process Automation (RPA) that enabled these organizations to automate rule-based and repetitive

operations, reducing errors and processes efficiently in order to mitigate the effects of these interruptions (Lubis and Sembiring, 2023; Kavitha, 2023; Banerjee and Parkhi, 2021). There is a study showing that the use of RPA in Supply Chain Management (SCM) can reduce cost and increase the efficiency of the business operations (Venigandla et al., 2024; Rajagopal and Ramamoorthy, 2023). In this context, the use of RPA technology in the supply chain pipeline is very beneficial.

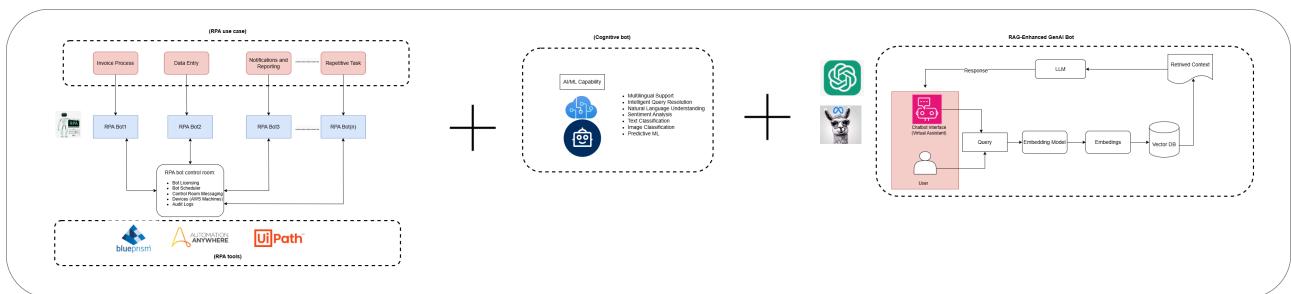
Robotic Process Automation (RPA) is a technology that employs software bots (i.e., bot technology) to automate repetitive tasks and processes. It improves efficiency, increases productivity, reduces manual labor work, reduces operational costs (Hofmann et al., 2020). The primary advantages of implementing RPA are the



increased efficiency and efficacy of business operations in a variety of applications and improved data security through access restrictions (Rivera Picado *et al.*, 2024; Pandy *et al.*, 2024; Khankhoje, 2024). Popular software vendors, including Automation Anywhere (Mahey, 2020), Blue Prism (Mukherjee, 2021), and UiPath (Khan and Khan, 2023), offer RPA tools for the development of bots. These platforms allow users to develop software bots that are designed to perform tasks such as data processing, web scraping, and information transmission. In the supply chain world, bots (software bots) are automatically updating inventory, keeping track of packages in real time, and getting useful information from supplier data on the Web (Krishna *et al.*, 2022). However, Robotic Process Automation (RPA) lacks a cognitive brain and the capacity to think through, learn, or make sophisticated judgments on its own (Herm *et al.*, 2021). It is a rule-based technology that follows preset guidelines or workflows to automate repetitive and organized processes (Dalsaniya, 2022). Cognitive bots are integrated with existing process workflows for end-to-end development, which enables cognitive capabilities

such as perception and decision-making abilities. However, cognitive bots lack the ability to process complex tasks and reduce performance in complex datasets (Baki *et al.*, 2023; Gidey *et al.*, 2023). To overcome problems with complex decision making and unstructured data, the integration of RPA with GenAI technology builds advanced bots that use Generative AI (GenAI) to help make better decisions (enhance the decision-making process), automate content generation and provide predictive insights (Richardson, 2020; Pranavi AM and Cholli, 2024; Ooi *et al.*, 2025).

Fig. 1 has provided a high-level integration pattern overview between various bot methodologies such as RPA (Rule-based software bots), Cognitive Bot (AI augmented bots), and GenAI Bot (Generative AI bots). This integration capabilities enhances the intelligent decision-making cognitive capabilities by leveraging the cutting-edge AI driven Retrieval Augmented Generation (RAG) systems. These systems automate the various tasks and create different content generation outputs by leveraging content generation models GPT, LLaMA and others.



**Fig. 1:** Overview of RPA, Cognitive Bot, and GenAI Bot

As demonstrated in the Fig. 1, Cognitive Bots, Generative AI (GenAI) Bots, and Robotic Process Automation (RPA) bots can all work together in a single automation setting.

On the left side of the diagram, the RPA layer shows how repetitive tasks based on rules can be automated. These tasks include writing invoices, entering data, sending alerts, and other structured activities. Each of these tasks is performed by a separate RPA bot (like Bot1, Bot2, or Bot3), which is overseen by a control room. This control room manages important tasks like arranging bots, licensing them, managing devices (including virtual machines), letting bots talk to each other, and keeping audit logs. This layer is where the RPA top automation tool like Blue Prism, Automation Anywhere, and UiPath work well in this first layer.

Artificial intelligence and machine learning are built into Cognitive Bots in the main layer, making automation better. Smart question answering, Natural Language Understanding (NLU), sentiment analysis, text and picture classification, and predictive analytics are some of the advanced tasks that these bots can perform. Cognitive Bots process unstructured or semistructured

data, which allows the system to deal with more complicated and changing inputs. This helps software to make smarter decisions and act in a way that is appropriate for the scenario based on the situation of the user.

In the upper right corner of the figure, there is a GenAI Bot that has been enhanced with Retrieval-Augmented Generation (RAG). This is the newest development in virtual helper technology using a LLM based model. People can talk to a chatbot system here. A vector embedding model takes the user's question and turns it into a vector representation. This representation is then compared with a vector database to get relevant contextual information. Then a Large Language Model (LLM), like those made by OpenAI or Meta (LLaMA), is given this information. The system comes up with an answer that is specific to the user's question. This method ensures that responses are natural and human-like and are based on correct data that is important to the situation.

RPA, Cognitive Bots, and GenAI Bots work together to create a strong automation framework. This framework allows companies to automate entire

processes by mixing rule-based efficiency with AI intelligence and the flexibility, scalability, and adaptability of generative language models.

Generative Artificial Intelligence (GenAI) refers to various models and techniques which usually include strong Natural Language Processing (NLP) models like Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2019; Sayeed et al., 2023; Miller, 2019) that are used in many fields to mainly perform various language related tasks. It performs better than other models on tasks such as answering questions, analyzing sentiments, and recognizing quotes. Generative Pre-trained Transformer (GPT) (Brown et al., 2020) is a deep learning neural network model that has become famous because it performs exceptionally well in interpreting the task of natural language, data augmentation, idea generation (Yenduri et al., 2024; Sufi, 2024).

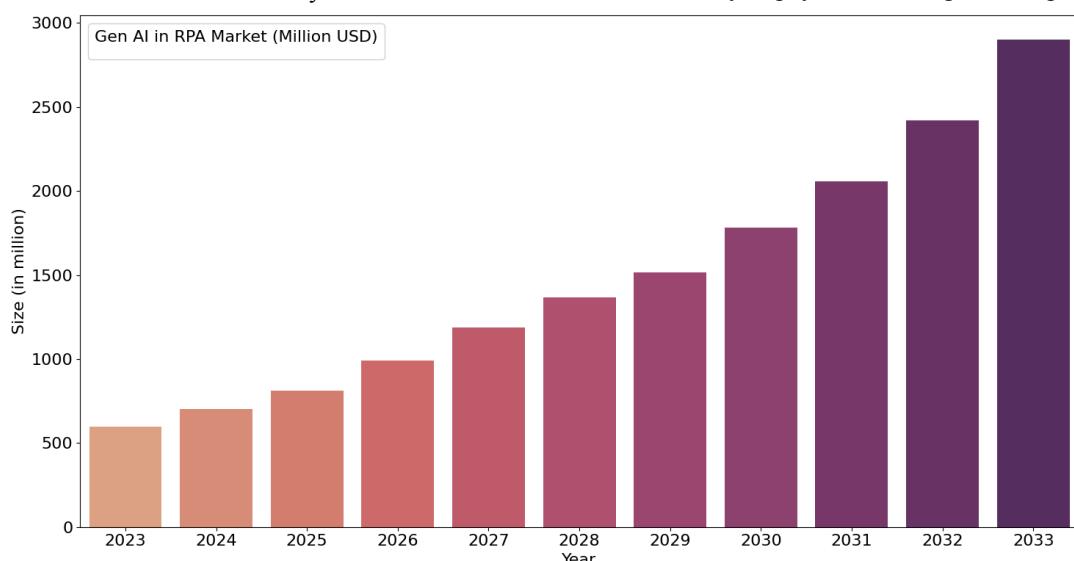
GenAI systems are built on models such as Generative Adversarial Networks (GANs) and Large Language Models (LLMs). These models generally have two major components: Generator and Discriminator (or Encoder and Decoder). However, depending on the model architecture, only a subset may be present. The LLMs are often used in Retrieval Augmented Generation(RAG) systems to enhance its accuracy and effectiveness by pairing it with a vector database to retrieve relevant information and generate realistic outputs based on specific information (Wu et al., 2025; Sengar et al., 2024).

These characteristics of such models make them well suited to understanding contexts and generating responses and actions depending on the domain specific knowledge provided to it. This domain specific context can be fed to the model using a specialized dataset for fine tuning the selected LLM model. Fine tuning domain specific LLMs enables them to identify tasks and execute

(based on the selected domain) the appropriate process depending on its context (Ismail et al., 2024; Cui et al., 2024). Multi-modal generative AI systems can understand and produce different kinds of information such as text, images, and videos. Also, These systems excel at tasks like converting text into images, editing images, and transforming text into videos (Wang et al., 2024; Jiang et al., 2024).

Generative AI has impacted many different industries. When integrated with RPA, it could help build enhanced automation systems with exceptional adaptability. In addition, various GenAI models can reinvent the supply chain optimization process in the future. As future market trends indicate the convergence of GenAI and RPA (Fig. 2), this has immense potential for the automation sector. Generative AI in the RPA market is expected to develop exponentially. The global generative AI market is expected to exceed \$800 million by 2025, demonstrating the high demand for AI-driven automation solutions in all industries (Gaul, 2023). Moreover, RPA vendors will offer to take advantage of GenAI-assisted automation according to the current market trend in RPA and GenAI world. In this work, we will explore some of the ways in which this integration can be accomplished as well as the challenges that will be faced in this pursuit and how they may be mitigated.

Generative AI (GenAI) and Robotic Process Automation (RPA) could work well together, but putting them into practice in the real world can be difficult. The high cost of deployment is one of the main problems (Chen et al., 2025). GenAI models need to spend a lot of money on computer infrastructure, cloud services, business software licenses, and staff training that are experts in their fields (Cacciari et al., 2010). These financial requirements can be especially hard for small and medium-sized businesses (SMEs), which may not have the money to pay for such large costs upfront.



**Fig. 2:** GenAI and RPA Market Trend

Another big problem is that new systems have to work with old ones. This is especially true for large companies that use old systems and complicated, distributed structures. Concerns about data protection, the need to follow rules, and the lack of standard deployment frameworks all add to operational and reputational risks. Also, many companies are hesitant to use GenAI-enhanced RPA because they don't know the return on investment (ROI) and there are not many compelling, proven use cases that show worth to use this approach.

A lot of supply chain automation uses robotic process automation (RPA) to perform repetitive tasks and follow rules. But it has a lot of problems when it comes to being scalable, flexible, vendor contract inspection, response time based on historical order data, and handling unstructured data. When it is working with complicated vendor contracts, inventory records that change all the time, and logistics documents that are not standardized. These restrictions make it harder to make decisions in real time and slow down operations. This is especially true for global businesses, where cultural disparities and changing rules are frequently changes. Hence, to overcome these issues are fixed when GenAI and RPA work together because it enables rational understanding, context-aware automation, and the flexibility to make changes at any time. For example, a Retrieval-Augmented Generation (RAG) architecture can deal with unstructured files, adapt instantly to new rules in the supply chain with multiple languages, and make responses or reports based on need. These are things that regular RPA does not have. In this paper a new GenAI + RPA structure is proposed. It would leverage advanced features to fix the issues with current RPA-based supply chain systems.

This article makes several key contributions to the field of supply chain optimization through the integration of GenAI and RPA. Firstly, it provides an overview of how the convergence of these technologies can enhance automation capabilities, especially in the handling of unstructured data and complex decision-making processes. Secondly, the article proposes a conceptual framework for integrating GenAI and RPA within supply chain operations. Highlights potential improvements in areas such as inventory management, transportation efficiency, anomaly detection, and damage detection. In addition, it discusses the role of middleware in facilitating seamless data exchange between RPA and GenAI systems, ensuring efficient workflow automation. The article also addresses the ethical considerations, scalability challenges, and technical hurdles associated with this integration to offer guidelines for successful implementation. By exploring these aspects, the article aims to provide valuable insights and practical strategies to use the combined power of GenAI and RPA to drive innovation and efficiency in supply chain management.

## Literature Review

Global supply chains have become far more intricate in today's interconnected environment. Effectively managing these networks, which involve complex financial, geopolitical, and resource-related considerations, requires more advanced systems than those used in the past (Riahi *et al.*, 2021). The aftermath of the COVID-19 pandemic brought to the forefront the shortcomings of the existing SCM systems currently in use. In addition to their greater complexity, SCMs suffer from uncertainty and information asymmetry. These issues amplify the variability within the system and make it harder to make accurate predictions. This makes advanced machine learning systems a crucial tool in improving the performance of SCMs.

In this article, we will use the definition of supply chains by Mentzer *et al.* (2001), which describes a supply chain as "a supply chain is the network of organizations that are involved, through upstream and downstream linkages, in the different processes and activities that produce value in the form of products and services delivered to the ultimate consumer". SCM encompasses a broad range of tasks that require advanced analytical skills and decision-making expertise to effectively manage complex global supply chain operations. These tasks can be broadly categorized into several distinct sub-domain areas, each presenting its own distinctive set of complexities and challenges.

In particular, the following task categories are commonly found in SCM environments: demand forecasting, inventory optimization, supplier selection, route optimization, risk analysis and mitigation, warehouse management, logistics planning, and transportation coordination. Each of these tasks presents a unique set of analytical challenges that require specialized skills and expertise to resolve effectively (Soori *et al.*, 2023; Mentzer *et al.*, 2001; Pournader *et al.*, 2021; Davuluri, 2023).

Demand forecasting is the process of estimating future demand for services or products in order to inform production planning, inventory management, and sales strategy decisions. This task requires the application of statistical models, machine learning algorithms, and data analytics techniques to forecast demand patterns and adjust production levels accordingly. Other factors such as market trends, competitor activity, and consumer preferences also need to be considered when making demand forecasting decisions.

Inventory optimization is another critical task in SCM that involves managing stock levels in order to reduce lead times, inventory costs, and improve customer satisfaction. This task requires the application of optimization mechanisms like linear programming and genetic algorithms, to minimize waste and streamline inventory levels. Furthermore, supply chain managers must also consider other factors such as supplier

reliability, logistics capacity, and market demand when making inventory optimization decisions.

Supplier selection is a critical task in SCM that involves recognizing and selecting reliable suppliers who can meet production demands at the lowest possible costs. This task requires the application of advanced analytical techniques, such as vendor selection models and supplier rating systems, to evaluate supplier performance and make informed decisions.

Route optimization is another important task in SCM that involves planning efficient transportation routes for goods or services between suppliers, manufacturers, and distribution centers. This task requires the application of advanced route-planning algorithms and data analytics techniques to maximize route efficiency, lessen transportation costs, and enhance delivery times. Accurate and timely availability of information from different sources is crucial for this task.

Warehouse management is a key task in SCM that involves managing storage facilities, inventory levels, and logistics operations to ensure efficient receipt, storage, and shipment of goods or services. This task requires the application of warehouse optimization models and supply chain simulation software, to optimize warehouse operations and minimize waste.

Each of these tasks is a challenge in itself but solving for feasible solutions for all of these without sacrificing the robustness of the chain is a exponentially more complex task. By utilizing advanced analytical algorithms, machine learning techniques, and data analytics tools, supply chain managers can improve their ability to handle all these tasks (Pouranader *et al.*, 2021; Tirkolaei *et al.*, 2021; Davuluri, 2023).

In order to operate efficiently in a complex environment and accomplish all these tasks, SCM systems must be able to reasonably accurately forecast the market in a deterministic manner on both supply and demand sides and use these models to forecast sales and inventories and streamline the logistical operations based on these forecasts (Davuluri, 2023). A variety of methods have been used to accomplish this goal but machine learning methods are currently one of the most popular.

The primary advantages of using machine learning methods for SCM are their ability to model non-linear relationships in the SCM, and their ability to accommodate unstructured datasets (Ni *et al.*, 2020). Machine learning techniques like neural networks (Leung, 1995; Aburto and Weber, 2007), support vector machines (Carboneau *et al.*, 2008; Guo *et al.*, 2009), decision trees (Bala, 2010; Estelles-Lopez *et al.*, 2017), etc. have been used in such applications for a while now. Many of these techniques have been used for SCM and have been evaluated to be better than traditional methods like moving averages, linear regression, exponential smoothing and auto-regressive models (Carboneau *et al.*, 2008; Soori *et al.*, 2023). Recent progress in machine

learning frameworks using deep neural networks variants like recurrent neural networks (RNN), convolutional neural networks (CNN), etc. have also been applied to SCM problems with a high degree of success (Hosseinnia Shavaki and Ebrahimi Ghahnavieh, 2023; Yu *et al.*, 2024). However these require extensive data preprocessing which is only possible in case of time series data and a lot of unstructured data, especially multimodal data is not used for such models. With the advancement of large language models (LLMs) capable of processing unstructured data, their feasibility for various SCM tasks has been extensively evaluated (Li *et al.*, 2023; Wang *et al.*, 2024; Aguero and Nelson, 2024; Srivastava *et al.*, 2024).

Another facet of SCM is the speed and efficiency of these systems. An accurate forecast is of no value if timely decisions can not be made based on those forecasts. This is where RPA traditionally comes in to improve efficiency of SCM (Wanner *et al.*, 2019; Zhan *et al.*, 2024; Mohamed and Frank, 2024). RPA is a system that performs repetitive tasks based on rules that usually involve structured data and deterministic outcomes (Aguirre and Rodriguez, 2017). However, due to their design, RPA systems are not very robust or adaptable to changes in the nature of the tasks despite their high efficiency and speed. This means that they are only effective on a static workflow and are poorly suited to more dynamic conditions (Balaguru, 2024).

The supply chain is one such application that is highly dynamic and requires constant monitoring. This is due to the frequent changes in prices as well as supply and demand conditions. Moreover, often unavoidable changes occur like changes in suppliers and distributors along with changes in their requirements, statuses and exceptions based on conditions. Tracking statuses and exceptions arising from these evolving conditions is also essential. RPA systems are useful to handle small parts of these complex webs but generally struggle to handle the broader context of such conditions by themselves (Nielsen *et al.*, 2023; Mohamed and Frank, 2024). However, adding a cognitively capable system like GenAI can allow these systems to respond to changes in conditions like production schedules, inventory levels and demand and pricing fluctuations in near real time. This results in a system that can not only forecast trends and respond to such changes but is also able to proactively optimize the supply chain through strategic planning and resource allocations, which drives down costs, minimizes disruptions. These can produce small but significant advantages for the businesses utilizing such systems, giving them a competitive edge in the market (Yandrapalli, 2023). Multiple works have explored this integration between RPA and GenAI systems despite the relatively recent development of GenAI. Use of LLMs for RPA in supply chain optimizations problems have been studied and shown to be a promising future step to implement in the industry however there are still significant challenges to

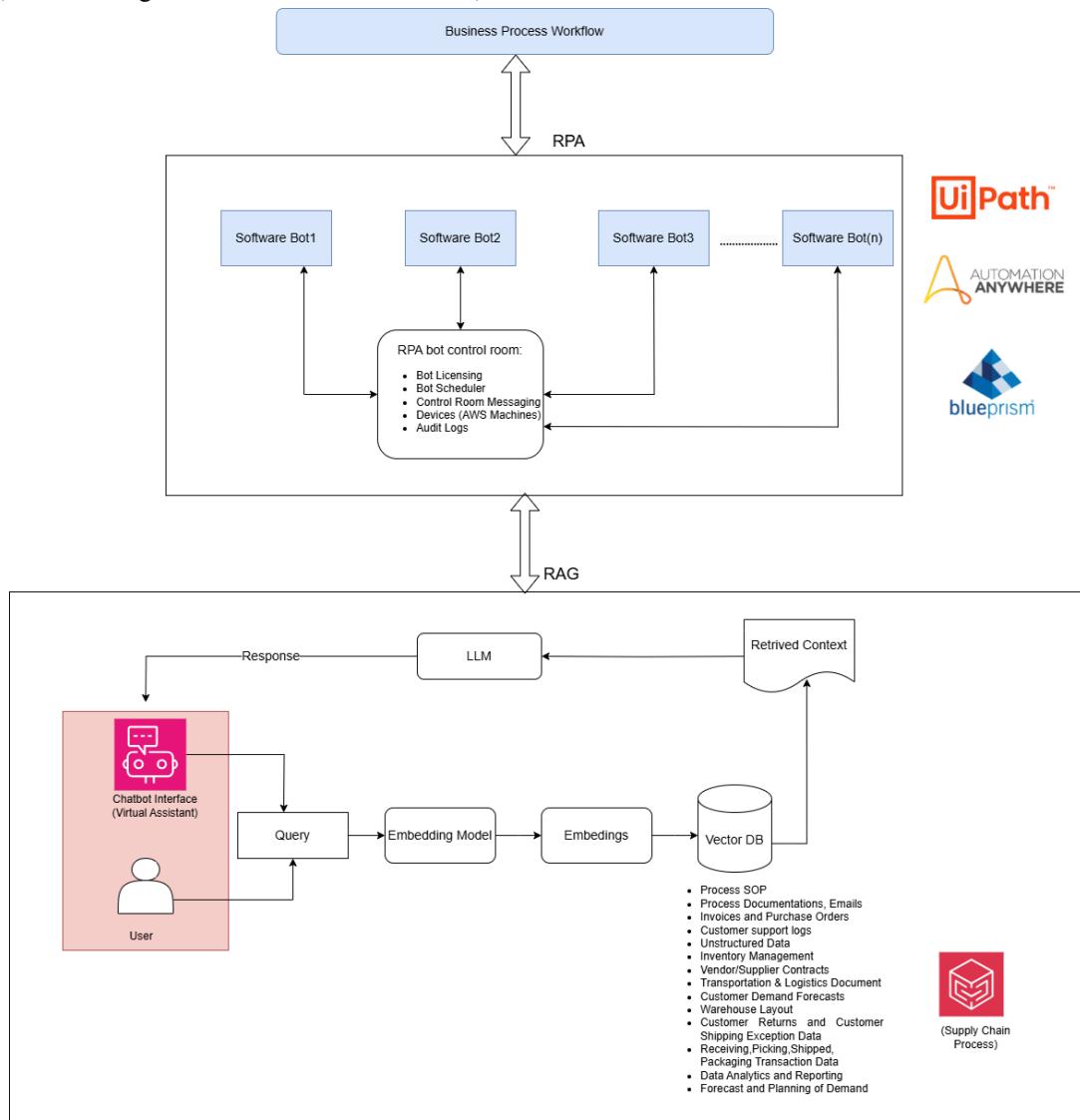
overcome due to the recency of these developments, especially in the areas of security, privacy and accuracy of information, all of which are active areas of research (Wang *et al.*, 2024; Li *et al.*, 2023; Balaguru, 2024; Jackson *et al.*, 2024; Khlie *et al.*, 2024; Jannelli *et al.*, 2024; Liu and Meidani, 2024; Abdellatif *et al.*, 2025; Ding *et al.*, 2024; Zeng *et al.*, 2023).

## New Perspectives and Suggested Strategies in Supply Chain Technologies

Fig. 3 illustrates that the combination of RPA and GenAI enables intelligent decision-making and abilities in various process inside the SCM process. These processes include demand forecasting and planning, inventory optimization, logistics and transportation management, customer service and communication, data analytics and reporting, as well as handling customer returns and shipping exceptions such as overages, mispicks, or shortages in deliveries. Moreover, it

supports inventory management (e.g., product availability alerts) and streamlines invoice and purchase order processing.

Fig. 3 depicts the combination of Generative AI (GenAI) and Robotic Process Automation (RPA) within a supply chain framework. It vividly highlights the interaction between various RPA components and an AI-driven Retrieval Augmented Generation (RAG) system, which uses vector database and generative model to enhance decision-making ability on unstructured data. Hence, by integrating GenAI and RPA on enterprise level, it will achieve the new level business automation process by leveraging the new cutting-edge technology of LLMs. In addition, to that process SOP, inventory records, unstructured data, customer support logs, vendor/supplier contracts, transportation and logistics documents, warehouse layout, and packaging data can be stored in a vector database for semantic search and automation that streamlines the supply chain operations.



**Fig. 3:** Integration of RPA and RAG-Based GenAI in Supply Chain Management Process

## *Data Flow Architecture of RPA and RAG-based GenAI Integration*

This section explores how data moves in a supply chain management system from robotic process automation (RPA) to retrieval-augmented generation (RAG)-based Generative AI (GenAI). Figure 3 shows how the architecture combines rule-based automation with smart, natural language user interfaces to make things run more smoothly (i.e., intelligent ability) and let users connect with the system better response to streamline the operations. The primary data flow patterns are outlined below and elaborated in detail.

- RPA bots are used to handle business tasks.
- Output from RPA to vector database.
- Query handling via embedding models.
- Context retrieval and LLM response.
- Final user interaction and feedback loop.

The process starts with a business workflow that includes repetitive structured tasks, such as processing invoices, updating purchase orders, and writing the process. These jobs are done by software bots in the RPA layer, such as Bot1, Bot2, Bot3, etc. These bots are controlled from a central location that handles licensing, scheduling, contact between virtual machines, and auditing. This layer can be used with well-known RPA systems such as Blue Prism, UiPath, and Automation Anywhere. The bots produce outputs that are both structured and semi-structured, such as reports, completed forms, transaction logs, and documentation.

These results are what the RAG-based GenAI system takes in. The RPA bots collect data, such as SOPs, invoices, customer interactions, logistics contracts, and support tickets. This data is then changed and stored in a vector database using an embedding model. This ensures that the GenAI system can get current full-text business data straight from operations.

The question is first turned into a vector embedding when a user sends it through the virtual helper (chatbot interface). This is checked against the vector database to find the content that is most semantically important. The original query and the context that was found are sent to a Large Language Model (LLM). The LLM then makes a natural language response that makes sense in this area. The chatbot gives the user this answer, which allows them to have smart talks that are aware of the situation.

Newly processed RPA data are put to the vector store one piece at a time by the system's continuous loop. This gives the GenAI helper the most up-to-date information on operations and transactions. With this kind of setup, the supply chain can handle many tasks, such as customer service, questions about returns and shipping, document analysis, and prediction analytics.

Basically, when businesses combine RPA with RAG-based GenAI, it can perform structured processes and

handle queries instantly with AI power. This mixed method makes the system smarter, the user experience better, and makes it easier to change to changing supply chain environments.

## *Benchmarking Automation Strategies With Proposed RPA-GenAI Integration*

It is important to see how the suggested combination of robotic process automation (RPA) with retrieval-augmented generation (RAG)-based Generative AI (GenAI) ranks compared to other cutting-edge automation methods already used in supply chain management. AI-enhanced Enterprise Resource Planning (ERP) systems, IBM Watson solutions, and blockchain-powered automation platforms, SAP S/4 HANA are additional possibilities with potential promise. The organization should be tested to see how well they work, how well they can be scaled, and how well they fit the situation.

AI-enhanced ERP systems, such as SAP S/4HANA (Prasetyo and Soliman, 2021) and Oracle Fusion Cloud (Kumar, 2022), integrate machine learning into the way businesses perform. With the help of predictive analytics, these systems are great at things like predicting demand, finding outliers, and optimizing supply. However, most of the time, their AI functions only work in structured data settings. To work with natural language or unstructured real-time data, they need to be highly customized. Additionally, these systems do not naturally allow conversational contact, which can make them less flexible in situations where decisions need to be made quickly.

Blockchain-based automation, on the other hand, ensures that supply lines with many parties are open and trustworthy. Distributed ledger technology is used by solutions such as IBM Food Trust (Kamath, 2018) and VeChain (Teoh, 2023) to track shipping events, make payments through smart contracts, and check where products come from. These platforms provide strong tracking and records that cannot be changed, but their business design depends on rules that cannot be changed. Because of this, they cannot handle language-driven queries or complex business logic by default, unless they are specifically programmed to do so.

To get a better idea of the benefits of combining robotic process automation (RPA) with generative AI based on the recovered generation (RAG) approach, it helps to examine how this method stacks up against other AI-powered supply chain options. Table 1 below shows the main ways in which the suggested model is the same as and different from popular platforms such as IBM Watson Supply Chain and SAP AI-driven logistics. This comparison shows how the combined RPA with the GenAI solution gives you more options, a better way to connect with users, and better ways to handle

unstructured data, system intelligence, robust data intelligence interaction, and a suitable integration with

RPA with other existing methodologies such as IBM Watson Supply Chain and SAP AI-driven Logistics.

**Table 1:** Benchmarking the Proposed RPA + GenAI Approach with Leading AI Supply Chain Solutions

| Comparison Criteria           | Proposed RPA + GenAI (RAG-based)                                                                                                                                  | IBM Watson Supply Chain                                                                               | SAP AI-driven Logistics                                                                                      | References                                                                                               |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Integration with RPA          | It works well with RPA systems like UiPath, Blue Prism and Automation Anywhere.                                                                                   | There isn't much native RPA involvement; most of the automation is built on the IBM Automation suite. | Requires custom methods or integration with external RPA tools (third party).                                | Tarihal <i>et al.</i> (2024); Yendluri <i>et al.</i> (2023); Sindhuja <i>et al.</i> (2024)               |
| Natural Language Interaction  | RPA and GenAI based powered chat tools that answer real-world questions immediately.                                                                              | Expresses natural language communication through Watson assistant                                     | Non-conversational AI that emphasizes dashboards and data analysis.                                          | Sabharwal <i>et al.</i> (2020); Vaid and Sharma (2022)                                                   |
| Handling of Unstructured Data | RAG renders information from files, documents, and other places to give businesses the most up-to-date information.                                               | Unstructured data can be processed with NLP and machine learning based approach.                      | Takes care of a lot of data that is structured but is unable to do much with unstructured data in real time. | Guan <i>et al.</i> (2024); Sim <i>et al.</i> (2023); Narne (2024)                                        |
| Integration Complexity        | Flexible API-based integration of GenAI models and RPA tools.                                                                                                     | High level of difficulty; needs to integrate IBM Watson technology and work with IT teams.            | Fully integrated into the SAP Putnoki and Orosz platform.                                                    | (2024); Sharma and Vaid (2022); Godse <i>et al.</i> (2018)                                               |
| System Intelligence           | High; it has levels for rule-based, cognitive, and generative layers.                                                                                             | Moderate; excellent at analytics but not very quick to pick up fresh/ cognitive tasks.                | Moderate work; already-built machine learning models are set up and fine-tuned for specific tasks.           | Hoyt <i>et al.</i> (2016); Pokala (2023)                                                                 |
| Process Flexibility           | High flexibility because of LLM prompt-tuning and retraining.                                                                                                     | Changes to rules are made manually, with moderate complexity.                                         | Low to moderate; depends on how ERP workflows are set up.                                                    | Ma <i>et al.</i> (2023); Khalil <i>et al.</i> (2021); Graves and Tomlin (2003); Lin <i>et al.</i> (2000) |
| Deployment Model              | It was designed to be deployed in the cloud, but it can also be used in a hybrid or on-premise environment, based on how the LLM and RPA are hosted on instances. | Cloud-based by default, but hybrid deployment options are supported.                                  | Mostly cloud and on-premise, based on how standard SAP S/4HANA is set up.                                    | Vankayalapati (2025); Bhatia (2025); Kritikos and Skrzypek (2019)                                        |

Table 2, mainly illustrates the comparison table with a performance metric for the use case for inventory management based on various use case scenarios. It shows how the suggested GenAI and RPA integration framework can improve inventory record automation, vendor contracts interpretations, process adaptability, cost efficiency, scalability, and processing of unorganized data (ie, unstructured data in processing of logistic documents) and, on the other hand, a traditional RPA approach that works on its own does not help as much in these areas, especially when working with changing data and difficult decision-making jobs in the supply chain automation domain.

By integrating GenAI and RPA together in the supply chain domain, as illustrated in Fig. 4, there are several processes that can enhance supply chain optimization using the integration approach. In this work a conceptual framework for integration has been proposed, which showcases the potential improvements rather than the actual methods that have been implemented.

**Enhancing Inventory Management for Real-Time Availability Alerts:** There are proposed works on optimization technique for logistics and inventory management using advance use of machine learning techniques (Pasupuleti *et al.*, 2024; Ola Al-Amin *et al.*,

2024; Azari *et al.*, 2024). However, here the approach is to leverage the GenAI to simulate different situations in the supply chain. This enables us to determine the best ways to monitor the inventory management flow, such as tracking product availability alerts (e.g., out of stock order, back orders, allocations, overfills, short dating or discontinuity of the product). By analyzing various data from each suppliers, GenAI can enhance the operation. Meanwhile, RPA automates the repetitive tasks like batch processing product orders based on supplier emails, tracking shipments of products from suppliers using tracking number, and updating products ETA details. These strategies are carried out smoothly on inventory website, so that customer can see the availability alert of the products.

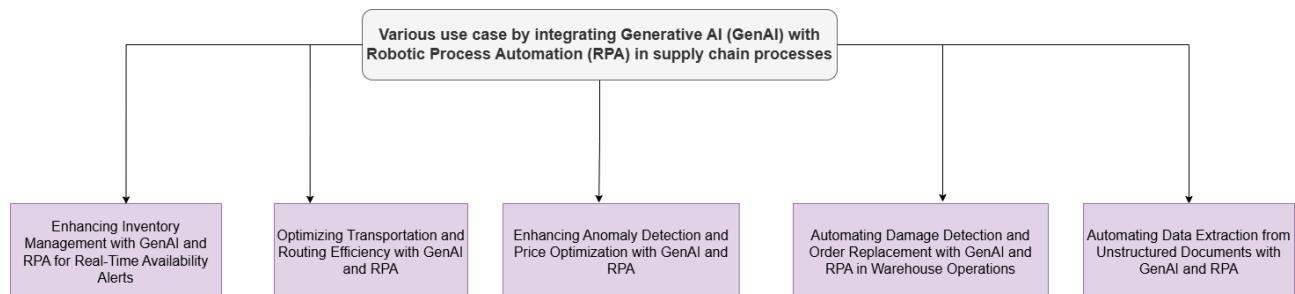
**Optimizing Transportation and Routing Efficiency:** The research currently focuses on advanced analytical machine learning models, optimization algorithm, reinforcement learning to achieve the improvements (Zeng, 2024; Mollaoglu *et al.*, 2023). In this context, we suggest an approach of utilizing GenAI that can play a vital role in transportation and routing optimization, which tends to save time and improve overall efficiency of supply chain logistics (e.g., avoiding the SLA breaches with customers). The GenAI model uses

historical traffic data, along with other critical input parameters like vehicle condition, product load in the vehicle container, weather conditions, and the classification of products (refrigerated vs. non-refrigerated, controlled vs. non-controlled). These parameters are used for the optimization process to

enhance the algorithm capabilities using GenAI. Moreover, RPA speeds up related tasks such as scheduling shipments in batch process, checking on delivery reports, and creating invoices automatically. The integration of GenAI and RPA significantly impacts optimization and smooths process within supply chain.

**Table 2:** Comparative Performance Metrics of Traditional RPA vs. RAG based (GenAI and RPA) in inventory Reconciliation: A Retail Case Study

| Performance Metrics                          | Use Case Scenario                                                                                                                                                                                                                            | Traditional RPA                                                        | Proposed GenAI + RPA (RAG-based)                                                                                                  | References                                                                                                              |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Response Time to Stock Request               | (e.g., An improved fulfillment of vendor stock orders request by looking at past order data, vendor SLAs, and backorder optimization; it has also allows inventory management to make automatic restocking decisions based on sales trends.) | Moderate and depends on predefined processes                           | Making decisions quickly and dynamically by using sales data, seller SLAs (on various data points auto re-training of LLM models) | Mungla (2019); Zhu and Vuppala (2024); Venigandla <i>et al.</i> (2024)                                                  |
| Error Rate in Vendor Contract Interpretation | (e.g., By processing and inspecting huge Excel files with thousands of product lines against vendor contracts, especially when the language in the contracts isn't clear or consistent)                                                      | High error rate                                                        | Low error rate using semantic search technique in vector DB approach                                                              | Flechsig <i>et al.</i> (2022); Nielsen <i>et al.</i> (2023); Khlie <i>et al.</i> (2024); Dhara and Delgado Barba (2023) |
| Reduction in Manual Review Time              | (e.g., Faster return claim processing from DC Ops team on customer returned products, quicker response on tracking data records like shipment details, validation of billing details)                                                        | Moderate improvement                                                   | Large-scale reduction by utilizing this methodology                                                                               | Tayab and Li (2024); Nalgozhina and Uskenbayeva (2024); Wulf and Meierhofer (2024)                                      |
| Handling of Unstructured Data                | (e.g., Use of handwritten pdf files, audio recordings, scanned documents/images with embedded invoice, PO details)                                                                                                                           | Limited feasibility                                                    | Leverages RAG and Vector databases to assist                                                                                      | Kerutis and Calneryte (2022); Cutting and Cutting-Decelle (2021); Hikov and Murphy (2024); Khan <i>et al.</i> (2024)    |
| Process Adaptability                         | (e.g., A policy/ work instruction changes, new vendor boarding or email template changes)                                                                                                                                                    | Low (difficult to handle the process with new enhancements)            | Very high (through LLM retraining or prompt-tuning)                                                                               | Gao <i>et al.</i> (2024); Gaddala (2023); Arslan and Cruz (2024); Stevens (2023)                                        |
| Cost Efficiency                              | (e.g., To automate generation of custom report or reconciliation report for thousands of various customers and each customer has unique line item contract and price set up rules)                                                           | Low cost to set up but more expensive to maintain rules and complexity | Initial costs are higher, but they are lower in the long run as LLM models retrained that minimize less human work                | Pahune and Rewatkar (2024); Arslan and Cruz (2024); Wang <i>et al.</i> (2025)                                           |
| Scalability Feature                          | (e.g., Auto response needed from the warehouse operation team across the global customer bases in multiple languages and business context)                                                                                                   | Limited scalability and maintenance needed                             | High scalability because of AI-driven flexibility and retraining approach                                                         | Palaniappan <i>et al.</i> (2024); Pahune <i>et al.</i> (2025); Kanka (2024); Smits (2024)                               |



**Fig. 4:** Applications of GenAI and RPA Integration in Enhancing Supply Chain Operations

Enhancing Anomaly Detection and Price Optimization: A recent study explored an LSTM network-based approach for predicting multivariate time series data, and an LSTM autoencoder network-based

approach combined with machine learning algorithm for detecting anomalies in sales (Nguyen *et al.*, 2021). Moreover, it utilizes the various machine learning techniques for cost optimization process (Davuluri,

2023). In contrast, we propose a GenAI approach with the aim to identify the unusual pattern for anomaly detection such as supplier pricing changes all of sudden, demand of the product increases. GenAI can also analyze competitor pricing and optimize pricing strategies based on customer demand. While, RPA automates jobs like getting data from pricing feeds, keeping pricing systems up to date, and sending out real-time alerts to help people make quick decisions via emails, report generation, Splunk alerts, ServiceNow tickets. The overall integration of GenAI and RPA can lead to a smart decision-making process in supply chain workflow.

**Automating Damage Detection and Order Replacement:** The studies proposed for identifying damage detection use AI driven approach like neural networks and specialized models for recognizing the damage (Malyshev *et al.*, 2021), along with the algorithm such as Fast-Solo algorithm (Wang *et al.*, 2022). However, leveraging GenAI based model can enhance the computer vision monitoring of the packaging label in the warehouse operations. This includes recognizing critical details such as QR code, barcodes, product identifiers, iLPN (Inbound license plate number), SKU number, and Material Return Authorization (MRA) images from packaging labels. Also, GenAI can identify damaged boxes or container during warehouse operations like the pick, pack and shipping process. If damaged is detected, GenAI can process the images and videos from warehouse camera that will be a bird's eye to analyze the product. GenAI system can not only detect damaged boxes but also classify the severity of the damage. This capability can trigger automated alerts to the warehouse operations team, enabling prompt action. For example, through RPA integration, the system can

automatically send emails to suppliers to request replacements for damaged goods, ensuring inventory is updated accordingly. This method streamlines the damage detection process, improves operational efficiency, and minimizes disruptions in warehouse workflows.

**Automating Data Extraction from Unstructured Documents:** As per the current trend, various techniques (e.g., OCR, autonomous RPA, cognitive automation, machine learning, computer vision methods) are available for information extraction (Baviskar *et al.*, 2021; Kinra *et al.*, 2020). Moreover, the combination of GenAI and RPA can be used to leverage enabling tasks like data extraction from unstructured documents. For instance, GenAI can be employed to interpret and extract text from handwritten invoices or unclear emails from various suppliers, converting them into readable formats. Then, RPA technology can be employed to input the extracted data into supply chain applications like Enterprise Resource Planning (ERP) system, Billing system, Warehouse Management System (WMS) system, Order Management System (OMS) system, Transportation Management System (TMS). This integration not only eliminates the need for manual data entry but also saves a substantial amount of time and effort, streamlining thereby the overall process.

Table 3 outlines the different characteristics of RPA, cognitive bots and GenAI bots. These systems are compared across various features, including automation type, learning capability, data handling, adaptability, use case, cost, and complexity. This comparison can help determine the appropriate environments and applications for the efficient deployment of each system.

**Table 3:** Comparison of RPA, Cognitive Bots, and GenAI Bots

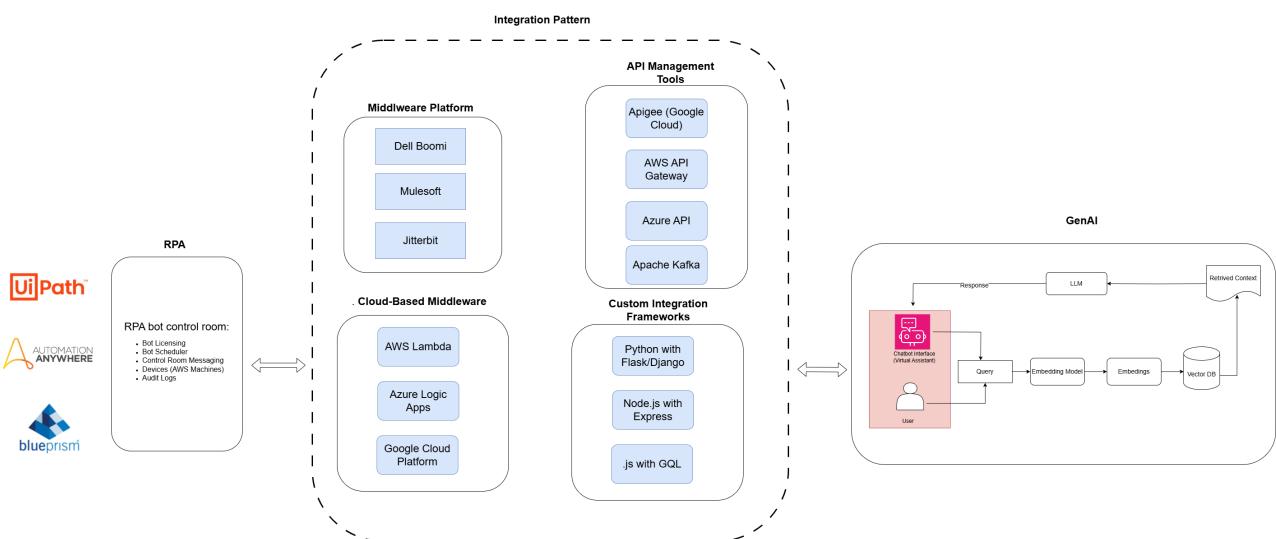
| Feature                | RPA                                                            | Cognitive Bots                                                                       | GenAI Bots                                                                                              | References                                                                                          |
|------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Automation Type        | Automates repetitive tasks, Rule-based automation              | AI driven technology, Decision-making processes                                      | Content generation, Creativity and Optimize operations                                                  | Hofmann <i>et al.</i> (2020); Bédard <i>et al.</i> (2024); Sheth <i>et al.</i> (2019);              |
| Learning Capability    | NA (Not Available)                                             | Limited and requires training with new data                                          | Enhanced learning capacities and task-specific fine-tuning                                              | Gao <i>et al.</i> (2025); Gómez Gandía <i>et al.</i> (2024); Soori <i>et al.</i> (2023)             |
| Data Handling          | Structured data only                                           | Handling both structured and unstructured data                                       | Mostly unstructured data (contextual comprehension and creative synthesis) as well as structured data   | Pahune and Chandrasekharan (2023); Radke <i>et al.</i> (2020); de Haan <i>et al.</i> (2024)         |
| Adaptability           | Fixed process and workflows, repetitive task (Low flexibility) | Learns and adapts over time (Moderate flexibility)                                   | Highly adaptive and creative due to high deep learning models (High flexibility)                        | Chauncey and McKenna (2024); Gausling (2023); Kunduru (2023)                                        |
| Use Cases              | Data entry, Payroll process, Purchase order process            | Chatbots assistance, Intelligent document processing (Ex: OCR), Image identification | Content creation, Code generation, Complex customer interaction                                         | Aguirre and Rodriguez (2017); Rao (2024); Chao <i>et al.</i> (2021)                                 |
| Cost Efficiency        | Low                                                            | Medium                                                                               | Medium to High (Varies based on number of training parameters)                                          | Deriu <i>et al.</i> (2020); Banerjee and Pahune (2023)                                              |
| Automation Performance | High performance task for repetitive and rule-based tasks.     | Moderate for tasks that use semi-structured data.                                    | High adaptability, performance, and flexibility across a wide range of unstructured and changing tasks. | Bédard <i>et al.</i> (2024); Thota <i>et al.</i> (2022); Dalsaniya (2022); Xia <i>et al.</i> (2023) |
| Complexity             | Low                                                            | Medium                                                                               | High                                                                                                    | Völker and Weske (2024); Feng <i>et al.</i> (2024)                                                  |

## Middleware for Integration Patterns between RPA and GenAI

Middleware serves as a critical interface between sender and receiver, it effectively connects the integration pattern between RPA and GenAI to ensure smooth data exchange. It employs various mechanisms, such as APIs, cloud-based integration, middleware platforms, and custom integration, to ensure smooth workflow automation between RPA and GenAI components. This integration pattern, illustrated in Fig. 5, highlights the strategic role of middleware in bridging RPA and GenAI. By enabling efficient data exchange and connectivity, middleware enhances automation and optimization within supply chain operations, underscoring its importance in modern technological ecosystems.

Various middleware are available at the enterprise level to tune the connection between RPA and GenAI, such as Mulesoft, Dell Boomi, and Jitterbit. These middleware platforms are highly configurable based on

the complexity of the workflow. Various API management tools, e.g., Apigee, Apache Kafka, Azure API, and AWS API gateway, are critical for enabling smooth data exchange in real time, batch processing, and near real time scenarios. These capabilities are essential in supply chain optimization process. The cloud-based enterprise-level middleware solution leverages integration pattern between RPA and GenAI, using platforms such as AWS Lambda, Microsoft's Azure logic apps, Google cloud platform. This approach impacts scalability and flexibility to manage complex integration using cloud computing. Moreover, there are several customer integration frameworks, including Node.js with express script, js with GQL, Python frameworks such as Flask, and Djanago. These frameworks are widely used for high load performance API scenarios, where large volumes of data need to be processed efficiently. They are designed to handle high-load environments, enabling the transmission of millions of data points within a single payload while maintaining robust request and response structures without causing timeouts during processing.



**Fig. 5:** Integration Patterns between RPA and GenAI

By utilizing the various middleware enterprise-based tools to work smoothly between RPA and RAG systems with GenAI platforms, it enhances smart decision-making capabilities. This integration pattern facilitates increased accuracy and continuous improvement in the automation process, delivering more accurate and unbiased responses as well as reducing the unfair outcomes with improved trustworthiness in the automated process. In addition, such tailored middleware can also enhance operational data security by using appropriate access controls, encryptions and data masking to secure data pipeline end-to-end. Hence, it will allow secure data integration, data mapping (through source-to-target mapping process), data translation, and data modeling logic, effectively mitigating data leakage risks. For example, it will ensure the secure storage of supplier contracts, SOPs, inventory records, product

transaction data, customer support logs, supply chain data points, and other sensitive information.

There are still technical challenges to integrate RPA with GenAI on enterprise level due to the compatibility issues between two different frameworks and methodology. The load balancer and performance evaluation issue is concerning as it has a large amount of complex unstructured data related to the supply chain network which can slow down the processing outcomes. In addition, the high cost of implementation to integrate these two systems due to various factors, such as cloud expenses, multiple AWS virtual desktop costs, licensing fees, and infrastructure expenditures, can also pose a significant drawback. Furthermore, deploying Large Language Models (LLMs) to production and staging environments, particularly in the presence of RPA workflows, presents a considerable challenge. The use of

Language Model Operations (LLMOPs) for deployment introduces additional complexities and potential obstacles, further complicating the integration of RPA and GenAI approaches.

#### *Cost-Benefit Analysis of Traditional RPA and GenAI-Enhanced RPA*

As per Table 4 several cost factors must be considered when choosing between traditional RPA and GenAI-Enhanced RPA. Since traditional RPA relies on rule-based scripting, it generally incurs lower initial implementation costs and can often leverage existing IT infrastructure without requiring significant upgrades (Tomar and Grover, 2024). In contrast, GenAI-Enhanced RPA demands a higher upfront investment due to the need for powerful hardware such as GPUs, cloud-based services, and licensing fees for large language models (LLMs) (Tang *et al.*, 2023; Kachris, 2025). With Traditional RPA platforms, cost predictability is lower because expenses like licensing and maintenance tend to remain stable and easier to forecast (Axmann *et al.*, 2021). However, GenAI-Enhanced RPA may experience more variable and potentially higher costs arising from pay-as-you-go cloud computing, frequent use of LLM APIs (i.e., OpenAI, AWS Bedrock), and ongoing model retraining or prompt tuning, which vary based on task complexity and usage volume (Liagkou *et al.*, 2024). In contrast, GenAI-Enhanced RPA requires substantial cloud resources to manage large AI models and process unstructured data, resulting in increased operational expenses.

Maintenance costs also differ as traditional RPA requires periodic updates to bots to reflect process changes, which are generally manageable and predictable (Schuler and Gehring, 2018). Meanwhile, GenAI-Enhanced RPA demands continuous monitoring, model retraining, and performance optimization, contributing to higher ongoing maintenance costs (Balaguru, 2024). Integrating GenAI technologies often necessitates investments in new hardware and scalable cloud storage solutions, whereas traditional RPA typically does not require major infrastructure upgrades (Randhi and Bandarapu, 2024; Sudha Rani, 2024). At a basic level, the security and compliance costs are similar; however, these costs may increase for GenAI-Enhanced RPA due to the sensitive nature of the data handled by AI models and the enhanced security measures needed for cloud deployment (Hayagreevan and Khamaru, 2024; Mittal *et al.*, 2025).

Licensing and subscription fees for traditional RPA platforms tend to be fixed and predictable, whereas GenAI-Enhanced RPA usually incurs higher and more variable fees based on LLM consumption and AI service subscriptions (Shekhar *et al.*, 2024). Overall, RPA offers greater cost-effectiveness and predictability, while GenAI-Enhanced RPA involves higher initial and ongoing costs but excels at handling unstructured data and enhancing automation intelligence. Organizations must carefully evaluate these trade-offs in light of their automation objectives and budget constraints (Dalsaniya and Patel, 2022).

**Table 4:** Cost-Benefit Analysis: Traditional RPA vs. GenAI-Enhanced RPA

| Aspect                          | Traditional RPA                                                                                                                                   | GenAI-Enhanced RPA                                                                                                                | References                                                                                                                                      |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Initial Implementation Cost     | It costs less to get started and doesn't require big changes because it uses rule-based scripting and IT infrastructure that is already in place. | GPUs, cloud services, and LLM license fees will cost more up front.                                                               | Axmann <i>et al.</i> (2021); Smeets <i>et al.</i> (2021); Barker <i>et al.</i> (2025); Cheng <i>et al.</i> (2025); Liagkou <i>et al.</i> (2024) |
| Cost Predictability             | It's easier to make budgets when licenses and maintenance costs are fixed.                                                                        | Costs change based on how much you use the cloud, how you connect with the LLM API, and how many times you fine-tune the process. | Schuler and Gehring (2018); Xia <i>et al.</i> (2024); Chow <i>et al.</i> (2024)                                                                 |
| Cloud Cost                      | Not much use of the cloud; usually runs on local computers or simple cloud setups.                                                                | A lot of cloud and computing power is needed to run big AI models and handle unstructured data.                                   | Dai <i>et al.</i> (2024); Cheng <i>et al.</i> (2025); Ichnowski <i>et al.</i> (2020); Nayyar (2024)                                             |
| Maintenance Cost                | Regular updates that are easy to use help bots adapt to changes in the way things are done.                                                       | Costs keep going up because of constant tracking, retraining, and performance tuning.                                             | Noppen <i>et al.</i> (2020); Ruha <i>et al.</i> (2023); Pahune and Akhtar (2025); Liagkou <i>et al.</i> (2024)                                  |
| Infrastructure Upgrade Cost     | Low start-up costs because it works with current systems and doesn't need extra storage.                                                          | Costs continue to go up because of constant tracking, retraining, and performance tuning.                                         | Kehrer and Kaiser (2024); Macha (2020); Axmann <i>et al.</i> (2021)                                                                             |
| Security and Compliance Costs   | Most of the time, the initial prices of compliance and security are close to the same.                                                            | Costs for security and compliance have gone up because of the need to protect private data in the cloud.                          | Tol and Sunar (2023); Bollikonda and Bollikonda (2025); Murugappan and Sree Kala (2022); Bhamidipati (2022)                                     |
| Licensing and Subscription Fees | Fixed fees that help with accurate cost planning.                                                                                                 | Pricing that changes based on how much LLM is used and the AI service deals that go with it.                                      | Janik (2024); Xu <i>et al.</i> (2024)                                                                                                           |

## Metrics for Evaluating the Impact of RPA and GenAI

By utilizing the combination of GenAI and RPA, a wide range of evaluation metrics can be used to assess performance. These include customer satisfaction metrics, continuous process improvement metrics, task enhancement and scalability metrics, cost savings metrics (ROI), process automation quality and improvement metrics, error reduction metrics, automation efficiency rates, and optimization success metrics. Numerous evaluation metrics have been proposed to measure the performance of RPA systems (Wellmann *et al.*, 2020; Quille *et al.*, 2023; Wanner *et al.*, 2019; Teodorczuk, 2021). Key metrics from these studies are outlined below:

### 1. Automation Efficiency Rate

Measures the percentage of tasks that are successfully automated compared to the total number of tasks attempted.

$$= \left( \frac{\text{Total Automated Tasks}}{\text{Total Tasks}} \right)$$

**Purpose:** Indicates the effectiveness of automation in handling workflows without failure.

### 2. Task Error Rate

Tracks the percentage of errors encountered during automated tasks.

$$= \left( \frac{\text{Number of Errors}}{\text{Total Tasks Executed}} \right)$$

**Purpose:** A low error rate (e.g., <2%) reflects high-quality automation and system reliability.

### 3. Process Completion Rate

Indicates the percentage of automated processes completed successfully within a specified timeframe.

$$= \left( \frac{\text{Completed Processes}}{\text{Total Processes Initiated}} \right)$$

**Purpose:** Ensures that automations are achieving their intended outcomes consistently.

### 4. Automated Cycle Time

Measures the time taken by an RPA bot to complete a task from start to finish.

$$= \text{End Time} - \text{Start Time}$$

**Purpose:** Shorter cycle times indicate higher efficiency compared to manual execution.

### 5. Return on Investment (ROI)

Evaluates the financial gains from RPA implementation relative to its costs.

$$= \frac{\text{Net Automation Profit} - \text{Automation Costs}}{\text{Automation Costs}}$$

**Purpose:** Demonstrates the profitability and cost-effectiveness of RPA initiatives.

### 6. Operational Cost Reduction

Quantifies the reduction in operational costs achieved through automation.

$$= \frac{\text{Manual Process Cost} - \text{Automated Process Cost}}{\text{Manual Process Cost}}$$

**Purpose:** Highlights direct financial savings from automating repetitive tasks.

### 7. Gained Productivity (FTE Savings)

Measures how many Full-Time Equivalents (FTEs) were saved by automating a process.

$$= \left( \frac{\text{Manual Hours Saved}}{\text{Standard FTE Hours}} \right)$$

**Example:** If automation saves 160 hours per month and one FTE works 160 hours/month, then FTE savings = 1.

### 8. Exception Rate

Tracks the percentage of cases where bots encounter errors or exceptions, such as missing data or system failures.

$$= \left( \frac{\text{Number of Exceptions}}{\text{Total Tasks Executed}} \right)$$

**Purpose:** Identifies process inefficiencies or areas requiring improvement. A good exception rate is typically <20%.

### 9. Bot Utilization Rate

Measures how often bots are active versus idle during their available time.

$$= \left( \frac{\text{Active Bot Time}}{\text{Total Available Time}} \right)$$

**Purpose:** Ensures optimal use of bots and identifies underutilized resources.

### 10. Value of Time Gains (VTG)

Compares the cost of manual processes with automated processes to quantify time-related savings.

$$= \frac{\text{Employee Cost (EC)} - \text{Automation Cost (AC)}}{\text{Automation Cost (AC)}}$$

Where - EC includes wages, taxes, and office costs.

- AC includes bot licenses, development, and maintenance costs.

### 11. Business Value Lost in Downtime

Calculates the financial impact of bot downtime on expected business outcomes.

$$BV_{\text{Lost}} = BV_{\text{Expected}} - BV_{\text{Achieved}}$$

Where -  $BV_{\text{Expected}}$  is the projected business value over a given period. -  $BV_{\text{Achieved}}$  is the actual business value delivered during that period.

## Challenges in Integrating GenAI with RPA Systems

### Ethical Considerations

The integration of Generative AI into RPA systems has the potential to revolutionize automation across industries, improving efficiency, adaptability, and decision-making capabilities. However, this also raises significant concerns regarding the ethical implications of such a monumental change in the automation paradigm that will vary between fields such as healthcare, finance, education, and customer support. Some of these concerns are described below:

**Truth and Accuracy:** One of the main concerns with GenAI systems is the errors introduced in their results, often due to 'hallucinations' that may reduce the accuracy of the responses. In RPA systems, reliability is an

important consideration and this issue is a major factor to be considered when introducing GenAIs into RPA systems. Although reduction and elimination of hallucinations is still an open challenge, many methods have been proposed so far to mitigate the negative effects of hallucinations, including better training methods and improved architectures with fact-checking for GenAI systems (Ferrara, 2023; Hadi *et al.*, 2023; Liu *et al.*, 2024).

**Security and Data Privacy:** RPA systems often handle sensitive data, e.g., personal information, financial and health records, etc. Ensuring that this data is properly handled without any lapses in privacy is of paramount importance both from a legal and ethical standpoint. There have been many instances where GenAI systems have inadvertently leaked training data and internal information due to specifically crafted prompts. There is also concern that using proprietary or operation critical data for fine-tuning such systems can result in information becoming accessible to outside entities without authorization to access such information to various extents. This, of course, depends on the model's reasoning abilities and resistance to prompt injection attacks, but currently there is no single method known to mitigate such risks. Therefore, a combination of such methods must be employed to ensure security and privacy. Some of the ways to mitigate these risks in the future include implementing robust encryption techniques, enforcing strict access controls, and conducting extensive testing of systems before deployment to reduce the likelihood of successful exploits (Liu *et al.*, 2024; Cohen *et al.*, 2024).

**Bias and Fairness:** RPA systems are expected to perform seamlessly to maximize the desired metrics, but use of GenAI systems trained on biased datasets may introduce unintended biases into the outcomes that can affect system performance. This issue can be minimized by the use of diverse sources of data for training and fine-tuning and by use of proper data processing and balancing techniques. Regular audit of such systems also helps to identify and correct any biases that might creep in due to other sources, such as user or administrator preferences (Jiao *et al.*, 2024; Liu *et al.*, 2024).

### *Scalability and Cost Implications*

Traditional RPA systems are built to perform very limited and specific tasks with exceptional efficiency. However, they often struggle to adapt to tasks outside their predefined scope. GenAI has the potential to enhance such processes by enabling adaptability to new situations and contexts while maintaining high efficiency. Unlike traditional RPA that relies on rigid rule-based workflows, GenAI can generate new workflows autonomously in response to evolving conditions. This capability can significantly enhance the utility of such automation in different fields, particularly in supply chain management. Here, dynamic adaptability

to new environments is achieved without the need for retraining the system. Such adaptability ensures uninterrupted automation, even in the face of fluctuating demands or process changes, thereby making the system more resilient and scalable. Moreover, it leads to substantial cost savings by reducing operating costs through minimized manual interventions and enabling faster, more efficient task completion (Liu and Meidani, 2024; Wang *et al.*, 2024; Li *et al.*, 2023).

### *Technical Hurdles in Integration With Existing Systems*

RPA systems are traditionally designed for structured rule-based tasks, while GenAI models are based on unstructured data and dynamic input. Integrating these two technologies requires sophisticated middleware and tools to bridge their architectural differences between these two paradigms. This can be done by ensuring compatibility between RPA platforms and GenAI frameworks, which often use different programming languages and data formats. GenAI also requires a large amount of high quality data for training/fine-tuning purposes, which is not necessarily the case for RPA systems. This can result in an inefficient system if such discrepancies are not taken into account and sufficiently addressed. To mitigate this, suitable synthetic data should be generated or additional real-world data collected during the design of the integrated system. The integration of GenAI also introduces new attack vectors in the RPA system by malicious prompting and jailbreak attempts that require the implementation of additional security measures to mitigate such attempts (Balaguru, 2024; Aguirre and Rodriguez, 2017; Li *et al.*, 2023; Wang *et al.*, 2024).

### *Guidelines for Integrating GenAI and RPA in Supply Chain Processes*

This section outlines best practices for seamlessly incorporating GenAI and RPA into supply chain workflows to ensure both innovation and reliability.

By using the GenAI and RPA approach to identify various use cases within supply chain processes (e.g., vendor invoicing, order and inventory management, and transportation and logistics records), it is necessary to fine-tune the LLMs to train on various tasks. This undertaking requires significant computing infrastructure like multiple high-performance GPUs, processors, and substantial storage capacity, as well as scalable and optimized communication and database software architectures to ensure efficient model training. This involves a substantial initial investment, and hence a thorough feasibility study must be undertaken for each use case prior to committing such resources.

Along with the computing resources required to fine-tune these systems, appropriate attention must also be paid to proper collection of vast amounts of high quality

training data. Where necessary, the generation of synthetic training data should also be prioritized, ensuring it is as unbiased and balanced as possible to achieve optimal model performance. This data must be stored in an efficient database that is encrypted and secured against malicious breaches and are only available for access to authorized entities.

The interfaces used to access the model responses also need to be secured against attacks like prompt injection. Proper guardrails should be built into these interfaces to ensure the responses are free of any inadvertent or coaxed data leaks. These leaks could reveal sensitive internal data used for model training or stored in RAG systems.

The system architecture should be designed to ensure truthfulness and accuracy of the responses and actions. It should include guardrails to reduce hallucinations such as inclusion of robust fact checking subsystems. Moreover, the use of chain of thought models to ensure logical consistency in responses. Prioritizing responses with lower temperatures should also be implemented wherever information is available in the databases.

It is important to train business partners, including business stakeholders, operational team, as this integration is a new way of designing RPA and GenAI combination. Workshops and training sessions will be required to help people understand the integration structure, its capabilities, and provide an overview of the process. Additionally, writing down the Standard Operating Procedures (SOP's) will make sure that they are followed the process.

Selecting the appropriate middleware pattern between RPA and Generative AI is crucial, as it depends on the volume of data and the data exchange pattern (e.g., batch process, weekly basis process, real-time, cron/schedule jobs). Therefore, choosing the right middleware is a crucial process for seamless integration and scalability.

Maintaining end-to-end model life cycle management and deployment is a critical task for LLMs. Implementing an RPA and LLMs-based integration approach requires a robust LLM Operations (LLMOPs) pipeline for successful deployment in production. This pipeline is essential to ensure that LLM model and RPA workflows operate efficiently.

### *Practical Mitigation Technique for Ethical and Privacy Risks in Supply Chain GenAI-RPA*

Integrating GenAI and RPA together to handle processes in the supply chain creates big problems with privacy and ethics. Possible data leaks, biased decisions, and illusions (hallucinations) from large language models (LLMs) are all risks. To successfully handle these technical risks, hence it needs the both technical safeguards and procedural controls that are made to fit the way the supply chain process works.

## Conclusion

The integration of GenAI and RPA brings about a transformative shift in supply chain optimization. This approach enhances flexibility and enables the effective handling of large volumes of unstructured data, such as invoice processing, vendor contracts, complex document retrieval, inventory management, intricate customer interactions, and adaptability. Also, it promotes continuous learning, thereby strengthening supply chain management systems. In this article, we explored some of the conceptual paradigms that may be used for such integration and also the advantages and guidelines for this approach. However, ethical concerns and performance evaluation issues arise when dealing with such data within the supply chain network. These challenges necessitate further research to ensure compatibility between RPA and GenAI, particularly in building secure middleware tools that enable their secure integration for seamless automation. Additionally, deployment challenges related to large language models (LLMs) within the RPA workflow, as well as the maintaining and securing extensive supply chain data, must be addressed as a part of future research in this field.

## Acknowledgment

The authors extend their gratitude to the reviewers and editor for any feedback that significantly enhanced this study.

## Funding Information

There was no funding for this research.

## Authors Contributions

**Saurabh Pahune:** Conceived the research idea, developed the core integration framework for GenAI and RPA, led the project, supervised data analysis, and drafted the manuscript.

**Zahid Akhtar:** Provided technical validation, assisted in data interpretation, and critically reviewed and revised the manuscript for intellectual content.

**Manoj Chandrasekharan:** Contributed to the conceptual framework design, performed benchmarking analysis, and assisted in compiling the literature review.

**Shipra Shivkumar Yadav:** Contributed to research design and methodology, performed data analysis, and participated in editing the publication.

**Kamran Siddique:** Conducted critical review and validation, helped structure the paper, and gave final approval for the submitted version.

## Ethics

This manuscript is an original work. The corresponding author certifies that all co-authors have

reviewed and approved the final version of the manuscript. No ethical concerns are associated with this submission.

## References

Abdellatif, O. H., Hassan, A. N., & Hamdi, A. (2025). LMRPA: Large Language Model-Driven Efficient Robotic Process Automation for OCR. *Advances on Intelligent Computing and Data Science II*, 35-44. [https://doi.org/10.1007/978-3-031-91351-8\\_4](https://doi.org/10.1007/978-3-031-91351-8_4)

Aburto, L., & Weber, R. (2007). Improved supply chain management based on hybrid demand forecasts. *Applied Soft Computing*, 7(1), 136-144. <https://doi.org/10.1016/j.asoc.2005.06.001>

Aguero, D., & Nelson, S. D. (2024). The Potential Application of Large Language Models in Pharmaceutical Supply Chain Management. *The Journal of Pediatric Pharmacology and Therapeutics*, 29(2), 200-205. <https://doi.org/10.5863/1551-6776-29.2.200>

Aguirre, S., & Rodriguez, A. (2017). Automation of a Business Process Using Robotic Process Automation (RPA): A Case Study. *Applied Computer Sciences in Engineering*, 65-71. [https://doi.org/10.1007/978-3-319-66963-2\\_7](https://doi.org/10.1007/978-3-319-66963-2_7)

Arslan, M., & Cruz, C. (2024). Business-RAG: Information Extraction for Business Insights. *Proceedings of the 21st International Conference on Smart Business Technologies*, 88-94. <https://doi.org/10.5220/0012812800003764>

Axmann, B., Harmoko, H., Herm, L.-V., & Janiesch, C. (2021). A Framework of Cost Drivers for Robotic Process Automation Projects. *Business Process Management: Blockchain and Robotic Process Automation Forum*, 428, 7-22. [https://doi.org/10.1007/978-3-030-85867-4\\_2](https://doi.org/10.1007/978-3-030-85867-4_2)

Azari, M., Arif, J., Moustabchir, H., & Jawab, F. (2024). Navigating Challenges and Leveraging Future Trends in AI and Machine Learning for Supply Chains. *AI and Machine Learning Applications in Supply Chains and Marketing*, 257-282. <https://doi.org/10.4018/979-8-3693-6760-5.ch011>

Baki, R. F., Akhtaruzzaman, M., Refat, T. A., Rahman, M., Razzak, M. A., Majumder, M. M. K., Islam, M. A., Ferdaus, M. M., Rahman, M. T., & Naveed, Q. N. (2023). Intelligent Head-bot, towards the Development of an AI Based Cognitive Platform. *MIST International Journal of Science and Technology*, 11(2), 01-14. [https://doi.org/10.47981/j.mijst.11\(02\)2023.440\(01-14\)](https://doi.org/10.47981/j.mijst.11(02)2023.440(01-14))

Bala, P. K. (2010). Decision Tree Based Demand Forecasts for Improving Inventory Performance. *Proceeding of the IEEE International Conference on Industrial Engineering and Engineering Management*, 1926-1930. <https://doi.org/10.1109/ieem.2010.5674628>

Balaguru, S. (2024). Securing Automated Intelligence: Challenges and Solutions in RPA and Generative AI. *International Journal for Multidisciplinary Research*, 6(5), 1-9. <https://doi.org/10.36948/ijfmr.2024.v06i05.27900>

Banerjee, A., & Parkhi, S. (2021). RPA Vendor Evaluation and Selection using AHP and Kano Model. *Psychology and Education Journal*, 57(9), 6230-6243. <https://doi.org/10.17762/pae.v57i9.2713>

Banerjee, B., & Pahune, S. (2023). A model for calculating cost of applying electronic governance and robotic process automation to a distributed management system. *ArXiv*, arXiv:2310.00828.

Barker, M., Bell, A., Thomas, E., Carr, J., Andrews, T., & Bhatt, U. (2025). Faster, Cheaper, Better: Multi-Objective Hyperparameter Optimization for LLM and RAG Systems. *ArXiv*. <https://doi.org/10.48550/arXiv.2502.18635>

Baviskar, D., Ahirrao, S., Potdar, V., & Kotecha, K. (2021). Efficient Automated Processing of the Unstructured Documents Using Artificial Intelligence: A Systematic Literature Review and Future Directions. *IEEE Access*, 9, 72894-72936. <https://doi.org/10.1109/access.2021.3072900>

Bédard, M., Leshob, A., Benzarti, I., Mili, H., Rab, R., & Hussain, O. (2024). A Rule-Based Method to Effectively Adopt Robotic Process Automation. *Journal of Software: Evolution and Process*, 36(11), e2709. <https://doi.org/10.1002/smr.2709>

Bhamidipati, V. S. (2022). A Holistic Approach to Ensure Security and Compliance while using Robotic Process Automation. *Proceeding of the 2022 Seventh International Conference on Parallel, Distributed and Grid Computing*, 378-383. <https://doi.org/10.1109/pdgc56933.2022.10053130>

Bhatia, R. (2025). Exploring the Fusion of SAP S/4HANA and Machine Learning for Intelligent Financial Operations. *Journal of Next-Generation Research 5.0*, 1(2), 1-6. <https://doi.org/10.70792/jngr5.0.v1i2.90>

Bollikonda, M., & Bollikonda, T. (2025). *Secure Pipelines, Smarter AI: LLM-Powered Data Engineering for Threat Detection and Compliance*. <https://doi.org/10.20944/preprints202504.1365.v1>

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Kruege, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., ... Amodei, D. (2020). Language Models are Few-Shot Learners. *Advances in Neural Information Processing Systems*, 1877-1901.

Cacciari, C., D-Andria, F., Gozalo, M., Hagemeier, B., Mallmann, D., Martrat, J., Perez, D. G., Rumpl, A., Ziegler, W., & Zsigri, C. (2010). elasticLM: A Novel Approach for Software Licensing in Distributed Computing Infrastructures. *Proceeding of the IEEE Second International Conference on Cloud Computing Technology and Science*, 67-74. <https://doi.org/10.1109/cloudcom.2010.19>

Carboneau, R., Laframboise, K., & Vahidov, R. (2008). Application of Machine Learning Techniques for Supply Chain Demand Forecasting. *European Journal of Operational Research*, 184(3), 1140-1154. <https://doi.org/10.1016/j.ejor.2006.12.004>

Chao, M.-H., Trappey, A. J. C., & Wu, C.-T. (2021). Emerging Technologies of Natural Language-Enabled Chatbots: A Review and Trend Forecast Using Intelligent Ontology Extraction and Patent Analytics. *Complexity*, 2021(1), 1-26. <https://doi.org/10.1155/2021/5511866>

Chauncey, S. A., & McKenna, H. P. (2024). Creativity and Innovation in Civic Spaces Supported by Cognitive Flexibility When Learning with AI Chatbots in Smart Cities. *Urban Science*, 8(1), 16-16. <https://doi.org/10.3390/urbansci8010016>

Chen, X., Gao, C., Chen, C., Zhang, G., & Liu, Y. (2025). An Empirical Study on Challenges for LLM Application Developers. *ACM Transactions on Software Engineering and Methodology*, 34(7), 1-37. <https://doi.org/10.1145/3715007>

Cheng, Y., Zhang, L., Wang, J., Yuan, M., & Yao, Y. (2025). RemoteRAG: A Privacy-Preserving LLM Cloud RAG Service. *Proceeding of the Findings of the Association for Computational Linguistics: ACL 2025*, 3820-3837. <https://doi.org/10.18653/v1/2025.findings-acl.197>

Chow, K., Tang, Y., Lyu, Z., Rajput, A., & Ban, K. (2024). Performance Optimization in the LLM World 2024. *Companion of the 15th ACM/SPEC International Conference on Performance Engineering*, 156-157. <https://doi.org/10.1145/3629527.3651436>

Cohen, S., Bitton, R., & Nassi, B. (2024). A Jailbroken GenAI Model Can Cause Substantial Harm: GenAI-powered Applications are Vulnerable to PromptWares. *Cryptography and Security*. <https://doi.org/10.48550/arXiv.2408.05061>

Cui, J., Zhang, W., Tang, J., Tong, X., Zhang, Z., Wen, J., Wang, R., & Wu, P. (2024). Multi-modal Generative AI: Multi-modal LLMs, Diffusions and the Unification. *Artificial Intelligence*. <https://doi.org/10.48550/arXiv.2409.14993>

Cutting, G. A., & Cutting-Decelle, A.-F. (2021). Intelligent Document Processing-Methods and Tools in the Real World. *Information Retrieval*. <https://doi.org/10.48550/arXiv.2112.14070>

Dai, X., Li, J., Liu, X., Yu, Anqi., & Lui, J. (2024). Cost-Effective Online Multi-LLM Selection with Versatile Reward Models. *Machine Learning*. <https://doi.org/10.48550/arXiv.2405.16587>

Dalsaniya, A. (2022). Cognitive Robotic Process Automation (RPA) for Processing Unstructured Data. *International Journal of Science and Research Archive*, 7(2), 639-643. <https://doi.org/10.30574/ijrsa.2022.7.2.0269>

Dalsaniya, A., & Patel, K. (2022). Enhancing Process Automation With AI: The Role of Intelligent Automation in Business Efficiency. *International Journal of Science and Research Archive*, 5(2), 322-337. <https://doi.org/10.30574/ijrsa.2022.5.2.0083>

Davuluri, M. (2023). Optimizing supply chain efficiency through machine learning-driven predictive analytics. *International Meridian Journal*, 5(5), 67-80. <https://doi.org/10.26662/ijert.v7i3.pp67-80>

de Haan, E., Padigar, M., El Kihal, S., Kübler, R., & Wieringa, J. E. (2024). Unstructured Data Research In Business: Toward A Structured Approach. *Journal of Business Research*, 177, 114655. <https://doi.org/10.1016/j.jbusres.2024.114655>

Deriu, J., Tuggener, D., von Däniken, P., Campos, J. A., Rodrigo, A., Belkacem, T., Soroa, A., Agirre, E., & Cieliebak, M. (2020). Spot The Bot: A Robust and Efficient Framework for the Evaluation of Conversational Dialogue Systems. *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*, 3974-3996. <https://doi.org/10.18653/v1/2020.emnlp-main.326>

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, 4171-4186. <https://doi.org/10.18653/v1/N19-1423>

Dhara, S., & Delgado Barba, S. (2023). Large Language Models in Supply Chain Management.

Ding, D., Mallick, A., Wang, C., Sim, R., Mukherjee, S., Ruhle, V., Lakshmanan, LaksV. S., & Awadallah, A. H. (2024). Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing. *Machine Learning*. <https://doi.org/10.48550/arXiv.2404.14618>

Estelles-Lopez, L., Ropodi, A., Pavlidis, D., Fotopoulou, J., Gkousari, C., Peyrodi, A., Panagou, E., Nychas, G.-J., & Mohareb, F. (2017). An Automated Ranking Platform for Machine Learning Regression Models for Meat Spoilage Prediction Using Multi-Spectral Imaging and Metabolic Profiling. *Food Research International*, 99, 206-215. <https://doi.org/10.1016/j.foodres.2017.05.013>

Feng, C. (Mitsu), Botha, E., & Pitt, L. (2024). From HAL to GenAI: Optimizing chatbot impacts with CARE. *Business Horizons*, 67(5), 537-548. <https://doi.org/10.1016/j.bushor.2024.04.012>

Ferrara, E. (2023). Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models. *First Monday*, 28(11), 1-22. <https://doi.org/10.5210/fm.v28i11.13346>

Flehsig, C., Anslinger, F., & Lasch, R. (2022). Robotic Process Automation in Purchasing and Supply Management: A Multiple Case Study on Potentials, Barriers, and Implementation. *Journal of Purchasing and Supply Management*, 28(1), 100718. <https://doi.org/10.1016/j.pursup.2021.100718>

Gaddala, V. S. (2023). Unleashing the Power of Generative AI and RAG Agents in Supply Chain Management: A Futuristic Perspective. *IRE Journals*, 6(12), 1411-1417.

Gao, L., Lu, J., Shao, Z., Lin, Z., Yue, S., Leong, C., Sun, Y., Zauner, R. J., Wei, Z., & Chen, S. (2025). Fine-Tuned Large Language Model for Visualization System: A Study on Self-Regulated Learning in Education. *IEEE Transactions on Visualization and Computer Graphics*, 31(1), 514-524. <https://doi.org/10.1109/tvcg.2024.3456145>

Gao, Y., Xiong, Y., Wang, M., & Wang, H. (2024). Modular RAG: Transforming RAG Systems into LEGO-like Reconfigurable Frameworks. *Computation and Language*. <https://doi.org/10.48550/arXiv.2407.21059>

Garay-Rondero, C. L., Martinez-Flores, J. L., Smith, N. R., Caballero Morales, S. O., & Aldrette-Malacara, A. (2019). Digital supply chain model in Industry 4.0. *Journal of Manufacturing Technology Management*, 31(5), 887-933. <https://doi.org/10.1108/jmtm-08-2018-0280>

Gaul, V. (2023). *Generative AI in RPA Market Size, Trends, and Forecast 2023-2032*.

Gausling, N. (2023). *Bots in Suits: Using Generative AI to Revolutionize Your Business*.

Gidey, H. K., Hillmann, P., Karcher, A., & Knoll, A. (2023). Towards Cognitive Bots: Architectural Research Challenges. *Artificial General Intelligence, Part of the Lecture Notes in Computer Science (LNCS) Series*, 13921, 105-114. [https://doi.org/10.1007/978-3-031-33469-6\\_11](https://doi.org/10.1007/978-3-031-33469-6_11)

Godse, N. A., Deodhar, S., Raut, S., & Jagdale, P. (2018). Implementation of Chatbot for ITSM Application Using IBM Watson. *Proceeding of the Fourth International Conference on Computing Communication Control and Automation*, 1-5. <https://doi.org/10.1109/iccubea.2018.8697411>

Gómez Gandía, J. A., Gavrila Gavrila, S., de Lucas Ancillo, A., & del Val Núñez, M. T. (2024). RPA as a Challenge Beyond Technology: Self-Learning and Attitude Needed for Successful RPA Implementation in the Workplace. *Journal of the Knowledge Economy*, 15(4), 19628-19655. <https://doi.org/10.1007/s13132-024-01865-5>

Graves, S. C., & Tomlin, B. T. (2003). Process Flexibility in Supply Chains. *Management Science*, 49(7), 907-919. <https://doi.org/10.1287/mnsc.49.7.907.16381>

Guan, K., Cao, Q., Sun, Y., Wang, X., & Song, R. (2024). BSharedRAG: Backbone Shared Retrieval-Augmented Generation for the E-commerce Domain. *Proceeding of the Findings of the Association for Computational Linguistics: EMNLP 2024*, 1137-1158. <https://doi.org/10.18653/v1/2024.findings-emnlp.62>

Guo, X., Yuan, Z., & Tian, B. (2009). Supplier Selection Based On Hierarchical Potential Support Vector Machine. *Expert Systems with Applications*, 36(3), 6978-6985. <https://doi.org/10.1016/j.eswa.2008.08.074>

Hadi, M. U., Al Tashi, Q., Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Shaikh, M. B., Akhtar, N., Hassan, S. Z., Shoman, M., Wu, J., Mirjalili, S., & Shah, M. (2023). Large Language Models: A Comprehensive Survey of its Applications, Challenges, Limitations, and Future Prospects. *Authorea Preprints*.

Hayagreen, H., & Khamaru, S. (2024). Security of and by Generative AI platforms. *Cryptography and Security*. <https://doi.org/10.48550/arXiv.2410.13899>

Herm, L.-V., Janiesch, C., Reijers, H. A., & Seubert, F. (2021). From Symbolic RPA to Intelligent RPA: Challenges for Developing and Operating Intelligent Software Robots. *Business Process Management*, 12875, 289-305. [https://doi.org/10.1007/978-3-030-85469-0\\_19](https://doi.org/10.1007/978-3-030-85469-0_19)

Hikov, A., & Murphy, L. (2024). Information Retrieval From Textual Data: Harnessing Large Language Models, Retrieval Augmented Generation and Prompt Engineering. *Journal of AI, Robotics & Workplace Automation*, 3(2), 142. <https://doi.org/10.69554/qafe6376>

Hofmann, P., Samp, C., & Urbach, N. (2020). Robotic Process Automation. *Electronic Markets*, 30(1), 99-106. <https://doi.org/10.1007/s12525-019-00365-8>

Holloway, S. (2024). Digital Transformation in Supply Chain and Its Impact on Marketing Effectiveness. *Preprints*. <https://doi.org/10.20944/preprints202406.1427.v1>

Hosseini Shavaki, F., & Ebrahimi Ghahnavieh, A. (2023). Applications of Deep Learning into Supply Chain Management: A Systematic Literature Review and a Framework for Future Research. *Artificial Intelligence Review*, 56(5), 4447-4489. <https://doi.org/10.1007/s10462-022-10289-z>

Hoyt, R. E., Snider, D., Thompson, C., & Mantravadi, S. (2016). IBM Watson Analytics: Automating Visualization, Descriptive, and Predictive Statistics. *JMIR Public Health and Surveillance*, 2(2), e157. <https://doi.org/10.2196/publichealth.5810>

Ichnowski, J., Prins, J., & Alterovitz, R. (2020). The Economic Case for Cloud-Based Computation for Robot Motion Planning. *Springer Proceedings in Advanced Robotic*, 59-65. [https://doi.org/10.1007/978-3-030-28619-4\\_8](https://doi.org/10.1007/978-3-030-28619-4_8)

Ismail, A. R., Aminuddin, A. S., Nurul, A., Zakaria, N. A., & Fadaaq, W. H. N. (2024). A Fine-Tuned Large Language Model for Domain-Specific with Reinforcement Learning. *2024 3rd International Conference on Creative Communication and Innovative Technology (ICCIT)*. <https://doi.org/10.1109/iccit62134.2024.10701208>

Jackson, I., Ivanov, D., Dolgui, A., & Namdar, J. (2024). Generative Artificial Intelligence in Supply Chain and Operations Management: A Capability-Based Framework for Analysis and Implementation. *International Journal of Production Research*, 62(17), 6120-6145. <https://doi.org/10.1080/00207543.2024.2309309>

Janik, D. (2024). Optimization of License Management for Business Process Automation with Robotic Process Automation. *International Journal of Contemporary Management*, 60(1), 280-289. <https://doi.org/10.2478/ijcm-2024-0017>

Jannelli, V., Schoepf, S., Bickel, M., Netland, T., & Brintrup, A. (2024). *Agentic LLMs in the Supply Chain: Towards Autonomous Multi-Agent Consensus-Seeking*. <https://doi.org/10.48550/arXiv.2411.10184>

Jiang, D., Ku, M., Li, T., Ni, Y., Sun, S., Fan, R., & Chen, W. (2024). GenAI Arena: An Open Evaluation Platform for Generative Models. *ArXiv Preprint, Submitted to NeurIPS 2024*. <https://doi.org/10.48550/arXiv.2406.04485>

Jiao, J., Afroogh, S., Xu, Y., & Phillips, C. (2024). Navigating LLM Ethics: Advancements, Challenges, and Future Directions. *ArXiv*. <https://doi.org/10.48550/arXiv.2406.18841>

Kachris, C. (2025). A Survey on Hardware Accelerators for Large Language Models. *Applied Sciences*, 15(2), 586-586. <https://doi.org/10.3390/app15020586>

Kamath, R. (2018). Food Traceability on Blockchain: Walmart's Pork and Mango Pilots with IBM. *The Journal of the British Blockchain Association*, 1(1), 1-12. [https://doi.org/10.31585/jbba-1-1-\(10\)2018](https://doi.org/10.31585/jbba-1-1-(10)2018)

Kanka, V. (2024). *Scaling Big Data: Leveraging LLMs for Enterprise Success*.

Kavitha, R. (2023). Hyperautomation-Beyond RPA: Leveraging Automation to Transform the Manufacturing Industries. *Proceeding of the International Conference on Computer Communication and Informatics (ICCCI)*, 1-5. <https://doi.org/10.1109/iccci56745.2023.10128636>

Kehrer, K., & Kaiser, C. (2024). *Machine Learning Upgrade: A Data Scientist's Guide to MLOps, LLMs, and ML Infrastructure*.

Kerutis, V., & Calneryte, D. (2022). Intelligent Invoice Documents Processing Employing RPA Technologies. *In Proceedings of the International Conference on Intelligent Computing and Applications (ICICA 2022)*, 610, 235-247. [https://doi.org/10.1007/978-3-031-16302-9\\_18](https://doi.org/10.1007/978-3-031-16302-9_18)

Khalil, K., Asgher, U., Ayaz, Y., Ahmad, R., Ruiz, J. A., Oka, N., Ali, S., & Sajid, M. (2021). Cognitive Computing for Human-Machine Interaction: An IBM Watson Implementation. *Proceedings of the International Conference on Intelligent Computing and Communication (ICICC 2019)*, 1205, 400-406. [https://doi.org/10.1007/978-3-030-51041-1\\_53](https://doi.org/10.1007/978-3-030-51041-1_53)

Khan, A. A., Hasan, M. T., Kemell, K. K., Rasku, J., & Abrahamsson, P. (2024). Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report. *ArXiv*. <https://doi.org/10.48550/arXiv.2410.15944>

Khan, S. P., & Khan, R. (2023). *RPA Using UiPATH in the Context of Next Generation Automation*. <https://doi.org/10.1002/9781394166954.ch27>

Khankhoje, R. (2024). Bridging the GAP: Selenium and RPA for Unparalleled Automation. *SSRN Electronic Journal*, 13(1), 1-12. <https://doi.org/10.2139/ssrn.4701292>

Khlie, K., Benmamoun, Z., Jebbor, I., & Serrou, D. (2024). Generative AI for Enhanced Operations and Supply Chain Management. *Journal of Infrastructure, Policy and Development*, 8(10), 6637. <https://doi.org/10.24294/jipd.v8i10.6637>

Kinra, A., Hald, K. S., Mukkamala, R. R., & Vatrapu, R. (2020). An Unstructured Big Data Approach for Country Logistics Performance Assessment in Global Supply Chains. *International Journal of Operations & Production Management*, 40(4), 439-458. <https://doi.org/10.1108/ijopm-07-2019-0544>

Krishna, V., Pinto, S. L., Poojary, S., Tejasvi, & Kumar S. S. (2022). RPA Bot to Automate Students Marks Storage Process. *International Journal for Research in Applied Science and Engineering Technology*, 10(7), 1113-1116. <https://doi.org/10.22214/ijraset.2022.45461>

Kritikos, K., & Skrzypek, P. (2019). Towards an Optimized, Cloud-Agnostic Deployment of Hybrid Applications. *In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2018*, 845, 435-449. [https://doi.org/10.1007/978-3-030-20485-3\\_34](https://doi.org/10.1007/978-3-030-20485-3_34)

Kumar, J. (2022). Intercompany Processes Efficiency Using Oracle Fusion ERP Cloud - A Systematic Review. *International Journal of Computer Trends and Technology*, 71(1), 56-64. <https://doi.org/10.14445/22312803/IJCTT-V71I1P109>

Kunduru, A. R. (2023). Cloud BPM Application (Appian) Robotic Process Automation Capabilities. *Asian Journal of Research in Computer Science*, 16(3), 267-280. <https://doi.org/10.9734/ajrcos/2023/v16i3361>

Leung, H. C. (1995). Neural networks in supply chain management. *Proceedings for Operating Research and the Management Sciences*, 347-352. <https://doi.org/10.1109/1emc.1995.524607>

Li, B., Mellou, K., Zhang, B., Pathuri, J., & Menache, I. (2023). Large Language Models for Supply Chain Optimization. *ArXiv*, arXiv:2307.03875.

Li, P., & Zhao, X. (2024). The Impact of Digital Transformation on Corporate Supply Chain Management: Evidence From Listed Companies. *Finance Research Letters*, 60, 104890. <https://doi.org/10.2139/ssrn.5370043>

Liagkou, V., Filiopoulos, E., Fragiadakis, G., Nikolaidou, M., & Michalakelis, C. (2024). The Cost Perspective of Adopting Large Language Model-as-a-Service. *Proceeding of the IEEE International Conference on Joint Cloud Computing (JCC)*, 106-113. <https://doi.org/10.1109/jcc62314.2024.00020>

Lin, G., Ettl, M., Buckley, S., Bagchi, S., Yao, D. D., Naccarato, B. L., Allan, R., Kim, K., & Koenig, L. (2000). Extended-Enterprise Supply-Chain Management at IBM Personal Systems Group and Other Divisions. *Interfaces*, 30(1), 7-25. <https://doi.org/10.1287/inte.30.1.7.11616>

Liu, T., & Meidani, H. (2024). Supply Chain Network Extraction and Entity Classification Leveraging Large Language Models. *Proceeding of the IEEE International Conference on Big Data*, 3448-3455. <https://doi.org/10.1109/bigdata62323.2024.10826017>

Liu, Y., Yao, Y., Ton, J.-F., Zhang, X., Guo, R., Cheng, H., Klochkov, Y., Taufiq, M. F., & Li, H. L. (2024). Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models. *arxiv*. <https://doi.org/10.48550/arXiv.2308.05374>

Lubis, L. S., & Sembiring, D. E. (2023). Driving Digital Transformation: Leveraging Robotic Process Automation (RPA) to Enhance Business Process Efficiency and Reducing Manual Errors. *Proceedings of the IEEE International Conference on Data and Software Engineering*, 91-95. <https://doi.org/10.1109/icodse59534.2023.10291662>

Ma, L., Thakurdesai, N., Chen, J., Xu, J., Korpeoglu, E., Kumar, S., & Achan, K. (2023). LLMs with User-defined Prompts as Generic Data Operators for Reliable Data Processing. *Proceedings of the IEEE International Conference on Big Data*, 4276-4283. <https://doi.org/10.1109/bigdata59044.2023.10386472>

Macha, K. B. (2020). Harnessing RPA for Digital Transformation and Cost Optimization in Government IT: A Strategic Review of Challenges, Benefits, and Operational Impact. *International Journal of Science and Research Archive*, 1(1), 141-154. <https://doi.org/10.30574/ijjsra.2020.1.1.0019>

Mahey, H. (2020). *Robotic Process Automation with Automation Anywhere: Techniques to fuel business productivity and intelligent automation using RPA*. <https://doi.org/10.1007/9781839215650>

Malyshev, M. I., Braginsky, S. A., Faddeeva, E. Yu., & Gogolin, S. S. (2021). Artificial Neural Network Detection of Damaged Goods by Packaging State. *Proceedings of the Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED)*, 1-7. <https://doi.org/10.1109/tirved53476.2021.9639113>

Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining Supply Chain Management. *Journal of Business Logistics*, 22(2), 1-25. <https://doi.org/10.1002/j.2158-1592.2001.tb00001.x>

Miller, D. (2019). Leveraging BERT for Extractive Text Summarization on Lectures. *Microsoft Azure for Java Developers: Deploying Java Applications through Azure WebApp, Azure Kubernetes Service, Azure Functions, and Azure Spring Cloud*. <https://doi.org/10.48550/arXiv.1906.04165>

Mittal, S., & Rohit. (2025). Generative AI as a Tool for RPA. In Dr. Mohammed Amin Almaiah (University of Jordan) (Ed.), *Intelligent Robotic Process Automation: Development, Vulnerability and Applications* (1st ed., pp. 133-154). IGI Global. <https://doi.org/10.4018/979-8-3693-4365-4.ch006>

Mizrak, F. (2024). Resilience and Innovation Strategies: How Businesses Adapt to Supply Chain Disruptions in the Post-Pandemic Era. *Politik Ekonomik Kuram*, 8(3), 581-600. <https://doi.org/10.30586/pek.1497718>

Mohamed, S., & Frank, L. (2024). Improved Efficiency and Reduced Costs: The Role of Robotic Process Automation (RPA). *Automating Price Adjustments. Preprint*.

Mollaoglu, M., Altay, B. C., & Balin, A. (2023). Bibliometric Review of Route Optimization in Maritime Transportation: Environmental Sustainability and Operational Efficiency. *Transportation Research Record: Journal of the Transportation Research Board*, 2677(6), 879-890. <https://doi.org/10.1177/03611981221150922>

Mukherjee, A. (2021). *Robotic Process Automation with Blue Prism to Optimize Inventory Management*.

Mungla, B. O. (2019). *Robotic Process Automation for Inventory Control and Management: A Case of Freight Forwarders Solutions*.

Murugappan, K., & Sree Kala, T. (2022). An Enhanced Security Framework for Robotic Process Automation. In K. Khanna, V. V. Estrela, & J. J. P. Coelho Rodrigues (Eds.), *Cyber Security and Digital Forensics* (1st ed., Vol. 73, pp. 231-238). Springer Singapore. [https://doi.org/10.1007/978-981-16-3961-6\\_20](https://doi.org/10.1007/978-981-16-3961-6_20)

Nalgozhina, N., & Uskenbayeva, R. (2024). Automating Hybrid Business Processes With RPA: Optimizing Warehouse Management. *Procedia Computer Science*, 231, 391-396. <https://doi.org/10.1016/j.procs.2023.12.223>

Narne, H. (2024). Generative Artificial Intelligence Device to analysis the data for SAP based Data Management. *Proceeding of the International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC)*, 111-116. <https://doi.org/10.1109/icec59683.2024.10837215>

Nayyar, K. (2024). Best practices for seamless integration of Robotic Process Automation (RPA) and cloud technologies. *International Journal of Science and Research Archive*, 13(2), 3337-3345. <https://doi.org/10.30574/ijjsra.2024.13.2.2560>

Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2021). Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. *International Journal of Information Management*, 57, 102282. <https://doi.org/10.1016/j.ijinfomgt.2020.102282>

Ni, D., Xiao, Z., & Lim, M. K. (2020). A systematic review of the research trends of machine learning in supply chain management. *International Journal of Machine Learning and Cybernetics*, 11(7), 1463-1482. <https://doi.org/10.1007/s13042-019-01050-0>

Nielsen, I. E., Piyatilake, A., Thibbotuwawa, A., Silva, M. M. D., Bocewicz, G., & Banaszak, Z. A. (2023). Benefits Realization of Robotic Process Automation (RPA) Initiatives in Supply Chains. *IEEE Access*, 11, 37623-37636. <https://doi.org/10.1109/access.2023.3266293>

Noppen, P., Beerepoot, I., van de Weerd, I., Jonker, M., & Reijers, H. A. (2020). How to Keep RPA Maintainable? *Business Process Management*, 12168, 453-470.  
[https://doi.org/10.1007/978-3-030-58666-9\\_26](https://doi.org/10.1007/978-3-030-58666-9_26)

Ola Al-Amin, K., Paul-Mikki Ewim, C., Ngochindo Igwe, A., & Chrisanctus Ofodile, O. (2024). AI-Enabled Intelligent Inventory and Supply Chain Optimization Platform for SMEs. *Comprehensive Research and Reviews Journal*, 2(2), 001-012.  
<https://doi.org/10.57219/crrj.2024.2.2.0030>

Ooi, K.-B., Tan, G. W.-H., Al-Emran, M., Al-Sharafi, M. A., Capatina, A., Chakraborty, A., Dwivedi, Y. K., Huang, T.-L., Kar, A. K., Lee, V.-H., Loh, X.-M., Micu, A., Mikalef, P., Mogaji, E., Pandey, N., Raman, R., Rana, N. P., Sarker, P., Sharma, A., ... Wong, L.-W. (2025). The Potential of Generative Artificial Intelligence Across Disciplines: Perspectives and Future Directions. *Journal of Computer Information Systems*, 65(1), 76-107.  
<https://doi.org/10.1080/08874417.2023.2261010>

Pahune, S., & Akhtar, Z. (2025). Transitioning from MLOps to LLMOps: Navigating the Unique Challenges of Large Language Models. *Information*, 16(2), 87-104.  
<https://doi.org/10.3390/info16020087>

Pahune, S., Akhtar, Z., Mandapati, V., & Siddique, K. (2025). The Importance of AI Data Governance in Large Language Models. *Big Data and Cognitive Computing*, 9(6), 147.  
<https://doi.org/10.3390/bdcc9060147>

Pahune, S., & Chandrasekharan, M. (2023). Several Categories of Large Language Models (LLMs): A Short Survey. *International Journal for Research in Applied Science and Engineering Technology*, 11(7), 615-633.  
<https://doi.org/10.22214/ijraset.2023.54677>

Pahune, S., & Rewatkar, N. (2024). *Cognitive Automation in the Supply Chain: Unleashing the Power of RPA vs. GenAI*.  
<https://doi.org/10.13140/RG.2.2.22528.85761>

Palaniappan, S., Mali, R., Cuomo, L., Vitale, M., Youssef, A., Madathil, A. P., Murugesan, M., Bettini, A., De Magistris, G., & Veneri, G. (2024). Enhancing Enterprise-Wide Information Retrieval through RAG Systems Techniques, Evaluation, and Scalable Deployment. *ADIPEC*, 111-116.  
<https://doi.org/10.2118/222032-ms>

Pandy, G., Jayaram, V., Krishnappa, M. S., Ingole, B. S., Ganeeb, K. K., & Joseph, S. (2024). Advancements in Robotics Process Automation: A Novel Model with Enhanced Empirical Validation and Theoretical Insights. *European Journal of Computer Science and Information Technology*, 12(5), 64-73.  
<https://doi.org/10.37745/ejcsit.2013/vol12n56473>

Pasupuleti, V., Thuraka, B., Kodete, C. S., & Malisetty, S. (2024). Enhancing Supply Chain Agility and Sustainability through Machine Learning: Optimization Techniques for Logistics and Inventory Management. *Logistics*, 8(3), 1-18.  
<https://doi.org/10.3390/logistics8030073>

Pokala, P. (2023). Integrating Generative AI With SAP Hana For Predictive Maintenance In Manufacturing. *International Journal of Advanced Research and Review (IJARR)*, 8(5), 36-41.  
<https://doi.org/10.70914/ijarr.2023.v08.i05.pp36-41>

Pournader, M., Ghaderi, H., Hassanzadegan, A., & Fahimnia, B. (2021). Artificial intelligence applications in supply chain management. *International Journal of Production Economics*, 241, 1-20. <https://doi.org/10.1016/j.ijpe.2021.108250>

Pranavi AM, V., & Cholli, N. G. (2024). Comprehensive study on generative ai, plethora of applications and impacts. *Nagaraj G., Comprehensive Study on Generative AI, Plethora of Applications and Impacts*, 26(2), 6-15.  
<https://doi.org/10.9790/0661-2605020615>

Prasetyo, Y. T., & Soliman, K. O. S. (2021). Usability Evaluation of ERP Systems: A Comparison between SAP S/4 Hana & Oracle Cloud. *Proceeding of the IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA)*, 207-211.  
<https://doi.org/10.1109/iciea52957.2021.9436697>

Putnoki, A. M., & Orosz, T. (2024). Artificial Intelligence and Cognitive Information Systems: Revolutionizing Business with Generative Artificial Intelligence and Robotic Process Automation. *Proceedings of International Conference on Recent Innovations in Computing: ICRIC 2023*, 2, 39-70.  
[https://doi.org/10.1007/978-981-97-3442-9\\_4](https://doi.org/10.1007/978-981-97-3442-9_4)

Quille, R., Almeida, F., Borycz, J., Corrêa, P., Filgueiras, L., Machicao, J., Almeida, G., Midorikawa, E., Demuner, V., Bedoya, J., & Vajgel, B. (2023). Performance Analysis Method for Robotic Process Automation. *Sustainability*, 15(4), 3702.  
<https://doi.org/10.3390/su15043702>

Radke, A. M., Vietnam, V., Dang, M. T., & Tan, A. (2020). Using robotic process automation (RPA) to enhance item master data maintenance process. *Logforum*, 16(1), 129-140.  
<https://doi.org/10.17270/j.log.2020.380>

Rajagopal, G., & Ramamoorthy, R. (2023). Robotic Process Automation: The Key to Reviving the Supply Chain Processes. *Confluence of Artificial Intelligence and Robotic Process Automation*, 335, 73-93. [https://doi.org/10.1007/978-981-19-8296-5\\_4](https://doi.org/10.1007/978-981-19-8296-5_4)

Randhi, K., & Reddy Bandarapu, S. (2024). Efficient resource allocation for generative AI workloads in cloud-native infrastructures: A multi-tiered approach. *International Journal of Science and Research Archive*, 13(2), 826-839.  
<https://doi.org/10.30574/ijjsra.2024.13.2.2208>

Rao, N. (2024). *Navigating Challenges with LLM-basedCode Generation using Software-specific Insights*.

Riahi, Y., Saikouk, T., Gunasekaran, A., & Badraoui, I. (2021). Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. *Expert Systems with Applications*, 173, 114702.  
<https://doi.org/10.1016/j.eswa.2021.114702>

Richardson, S. (2020). Cognitive automation: A new era of knowledge work? *Business Information Review*, 37(4), 182-189.  
<https://doi.org/10.1177/0266382120974601>

Rivera Picado, C. M., Latorre, L., Rego, E., De Leo, L., & Gutierrez, M. (2024). *Tech Report: RPA*.  
<https://doi.org/10.18235/0013018>

Ruha, L., Rinta-Kahila, T., & Pentinen, E. (2023). Robotic Process Automation from the Design-Capital Perspective - Effects on Technical Debt and Digital Options. *Proceedings of the Annual Hawaii International Conference on System Sciences*, 5442. <https://doi.org/10.24251/hicss.2023.664>

Sabharwal, N., Barua, S., Anand, N., & Aggarwal, P. (2020). Building Your First Bot Using Watson Assistant. *Building Cognitive Applications with IBM Watson Services: Volume 1: Concepts and Fundamentals*, 1, 47-102.  
[https://doi.org/10.1007/978-1-4842-5555-1\\_4](https://doi.org/10.1007/978-1-4842-5555-1_4)

Sayeed, M. S., Mohan, V., & Muthu, K. S. (2023). BERT: A Review of Applications in Sentiment Analysis. *HighTech and Innovation Journal*, 4(2), 453-462. <https://doi.org/10.28991/hij-2023-04-02-015>

Schuler, J., & Gehring, F. (2019). Implementing Robust and Low-Maintenance Robotic Process Automation (RPA) Solutions in Large Organisations. *SSRN Electronic Journal*.  
<https://doi.org/10.2139/ssrn.3298036>

Sengar, S. S., Hasan, A. B., Kumar, S., & Carroll, F. (2024). Generative artificial intelligence: a systematic review and applications. *Multimedia Tools and Applications*, 84(21), 23661-23700.  
<https://doi.org/10.1007/s11042-024-20016-1>

Shah, S., Chen, S., & Ganji, E. N. (2024). An Investigative Study to Examine Impact of Digitalisation on Manufacturing Supply Chains. *Engineering World*, 6, 61-89.  
<https://doi.org/10.37394/232025.2024.6.8>

Sharma, C., & Vaid, A. (2022). Converging SAP, AI, and data analytic for transformative business management. *World Journal of Advanced Research and Reviews*, 14(3), 736-761.  
<https://doi.org/10.30574/wjarr.2022.14.3.0214>

Shekhar, S., Dubey, T., Mukherjee, K., Saxena, A., Tyagi, A., & Kotla, N. (2024). Towards Optimizing the Costs of LLM Usage. *ArXiv*.  
<https://doi.org/10.48550/arXiv.2402.01742>

Sheth, A., Yip, H. Y., Iyengar, A., & Tepper, P. (2019). Cognitive Services and Intelligent Chatbots: Current Perspectives and Special Issue Introduction. *IEEE Internet Computing*, 23(2), 6-12. <https://doi.org/10.1109/mic.2018.2889231>

Sim, J., Huang, X., Horan, M. R., Stewart, C. M., Robison, L. L., Hudson, M. M., Baker, J. N., & Huang, I.-C. (2023). Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review. *Artificial Intelligence in Medicine*, 146, 102701. <https://doi.org/10.1016/j.artmed.2023.102701>

Sindhuja, R., Modugu, P. T., Goud, S. A., Kumar, E. R., Babu, G. S., & Reddy, R. (2024). A Comparative Analysis of RPA tools: UiPath, Automation Anywhere and Robocorp. *Proceeding of the OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0*.  
<https://doi.org/10.1109/otcon60325.2024.10688237>

Smeets, M., Erhard, R., & Kaußler, T. (2021). The Implementation of RPA. *Robotic Process Automation (RPA) in the Financial Sector*, 57-98.  
[https://doi.org/10.1007/978-3-658-32974-7\\_5](https://doi.org/10.1007/978-3-658-32974-7_5)

Smits, J. R. (2024). *Managing RPA Scalability: An Explanatory Case Study*.

Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. *Cognitive Robotics*, 3, 54-70. <https://doi.org/10.1016/j.cogr.2023.04.001>

Srivastava, S. K., Routray, S., Bag, S., Gupta, S., & Zhang, J. Z. (2024). Exploring the Potential of Large Language Models in Supply Chain Management. *Journal of Global Information Management*, 32(1), 1-29.  
<https://doi.org/10.4018/jgim.335125>

Stevens, W. (2023). Robotic process automation in supply chain. *European Journal of Supply Chain Management*, 1(1), 1-10.

Sudha Rani, P. R. (2024). Integrating Generative AI in Cloud Computing Architectures: Transformative Impacts on Efficiency and Innovation. *Nanotechnology Perceptions*, 20(6), 1728-1742.  
<https://doi.org/10.62441/nano-ntp.vi.3004>

Sufi, F. (2024). Generative Pre-Trained Transformer (GPT) in Research: A Systematic Review on Data Augmentation. *Information*, 15(2), 99.  
<https://doi.org/10.3390/info15020099>

Tang, Z., Wang, Y., He, X., Zhang, L., Pan, X., Wang, Q., Zeng, R., Zhao, K., Shi, S., & He, B. (2023). FusionAI: Decentralized Training and Deploying LLMs with Massive Consumer-Level GPUs. *arxiv*.  
<https://doi.org/10.48550/arXiv.2309.01172>

Tarihal, B., Kaliwal, R., & Ammanagi, A. (2024). The Transformative Influence of Artificial Intelligence on Supply Chain Management. *ITM Web of Conferences*, 68, 1-17.  
<https://doi.org/10.1051/itmconf/20246801016>

Tayab, A., & Li, Y. (2024). The Contribution of the RPA Technology in Enhancing Better Business Performance in Warehouse Management. *IEEE Access*, 12, 142419-142426.  
<https://doi.org/10.1109/access.2024.3470221>

Teodorczuk, B. (2021). *A Guide to Robotic Process Automation Metrics - Measure RPA Success*.  
<https://flobotics.io/blog/rpa-successs-metrics/>

Teoh, B. (2023). Solving the blockchain oracle problem to enable supply chain mass adoption. *AIP Conference Proceedings*. The 11th International Conference on Theoretical and Applied Physics, Surabaya, Indonesia.  
<https://doi.org/10.1063/5.0123942>

Thota, S., Dixit, R. S., Nurpeiis, M., Parida, D. K., Issova, A., & Nigmatova, A. (2022). Robotics and Automatics in Terms of Utilizing Rules-based Business Processes. *Proceeding of the 4th International Conference on Inventive Research in Computing Applications (ICIRCA)*, 261-266. <https://doi.org/10.1109/icirca54612.2022.9985682>

Tirkolaei, E. B., Sadeghi, S., Mooseloo, F. M., Vandchali, H. R., & Aeini, S. (2021). Application of Machine Learning in Supply Chain Management: A Comprehensive Overview of the Main Areas. *Mathematical Problems in Engineering*, 2021, 1-14. <https://doi.org/10.1155/2021/1476043>

Tol, M. C., & Sunar, B. (2023). *ZeroLeak: Using LLMs for Scalable and Cost Effective Side-Channel Patching*. [https://doi.org/10.1007/978-3-031-70879-4\\_15](https://doi.org/10.1007/978-3-031-70879-4_15)

Tomar, P., & Grover, V. (2024). Robotic Process Automation. *The Tangible and Human Shift in Business Process Efficiency*, 238-251. <https://doi.org/10.1201/9781032625829-14>

Vaid, A., & Sharma, C. (2022). Leveraging SAP and Artificial Intelligence for optimized enterprise resource planning: enhancing efficiency, automation, and decision-making. *World Journal of Advanced Research and Reviews*, 14(3), 762-769. <https://doi.org/10.30574/wjarr.2022.14.3.0276>

Vankayalapati, R. K. (2025). The Synergy Between Public and Private Clouds in Hybrid Infrastructure Models: Real-World Case Studies and Best Practices. *Deep Science Publishing*. <https://doi.org/10.70593/978-81-984306-5-6>

Venigandla, K., Manoj Tatikonda, V., & Vemuri, N. (2024). Implementing RPA to optimize supply chain and inventory management in the pharmaceutical industry. *World Journal of Advanced Engineering Technology and Sciences*, 11(2), 281-288. <https://doi.org/10.30574/wjaets.2024.11.2.0108>

Völker, M., & Weske, M. (2024). Measuring Complexity of Bot Models in Robotic Process Automation. *Educators and Industry Forum. BPM 2024.*, 527, 154-168. [https://doi.org/10.1007/978-3-031-70445-1\\_10](https://doi.org/10.1007/978-3-031-70445-1_10)

Wang, H., Jiang, J., Hong, L. J., & Jiang, G. (2025). *LLMs for Supply Chain Management*. <https://doi.org/10.48550/arXiv.2505.18597>

Wang, H., Liu, Q., & Zhang, G. (2022). *Container Damage Detection Algorithm Based on Fast-Solo*. [https://doi.org/10.1007/978-981-19-6226-4\\_13](https://doi.org/10.1007/978-981-19-6226-4_13)

Wang, S., Zhao, Y., Hou, X., & Wang, H. (2024). Language Model Supply Chain: A Research Agenda. *ACM Transactions on Software Engineering and Methodology*, 3708531. <https://doi.org/10.1145/3708531>

Wang, X., Zhou, Y., Huang, B., Chen, H., & Zhu, W. (2024). Multi-Modal Generative AI: Multi-Modal LLM, Diffusion and Beyond. *arXiv*. <https://doi.org/10.48550/arXiv.2409.14993>

Wanner, J., Hofmann, A., Fischer, M., Imgrund, F., Janiesch, C., & Geyer-Klingenberg, J. (2019). Process selection in rpa projects-towards a quantifiable methodof decision making. *International Conference on Information Systems*. Association for Information Systems (AIS), New York, NY, USA.

Wellmann, C., Stierle, M., Dunzer, S., & Matzner, M. (2020). A Framework to Evaluate the Viability of Robotic Process Automation for Business Process Activities. *A Framework to Evaluate the Viability of Robotic Process Automation for Business Process Activities*, 393, 200-214. [https://doi.org/10.1007/978-3-030-58779-6\\_14](https://doi.org/10.1007/978-3-030-58779-6_14)

Wu, C., Shao, N., Liu, Z., Xiao, S., Li, C., Zhang, C., Wang, S., & Lian, D. (2025). Lighter And Better: Towards Flexible Context Adaptation For Retrieval Augmented Generation. *Proceedings of the Eighteenth ACM International Conference on Web Search and Data Mining*, 271-280. <https://doi.org/10.1145/3701551.3703580>

Wulf, J., & Meierhofer, J. (2024). Exploring the potential of large language models for automation in technical customer service. *ArXiv*. <https://doi.org/10.48550/arXiv.2405.09161>

Xia, Y., Kim, J., Chen, Y., Ye, H., Kundu, S., Hao, C. C., & Talati, N. (2024). Understanding the Performance and Estimating the Cost of LLM Fine-Tuning. *Proceeding of the IEEE International Symposium on Workload Characterization (IISWC)*, 210-223. <https://doi.org/10.1109/iiswc63097.2024.00027>

Xia, Y., Shenoy, M., Jazdi, N., & Weyrich, M. (2023). Towards autonomous system: flexible modular production system enhanced with large language model agents. *Proceeding of the International Conference on Emerging Technologies and Factory Automation (ETFA)*, 1-8. <https://doi.org/10.1109/etfa54631.2023.10275362>

Xu, W., Gao, K., He, H., & Zhou, M. (2024). A first look at license compliance capability of LLMs in code generation. *ArXiv E-Prints*. <https://doi.org/10.48550/arXiv.2408.02487>

Yandrapalli, V. (2023). Revolutionizing Supply Chains Using Power of Generative AI. *International Journal of Research Publication and Reviews*, 4(12), 1556-1562. <https://doi.org/10.55248/gengpi.4.1223.123417>

Yendluri, D. K., Tatikonda, R., Thatikonda, R., Ponnala, J., Kempanna, M., & Bhuvanesh, A. (2023). Integration of SAP and Intelligent Robotic Process Automation. *Proceeding of the International Conference on Next Generation Electronics*, 1-6. <https://doi.org/10.1109/nelex59773.2023.10420947>

Yenduri, G., Ramalingam, M., Selvi, G. C., Supriya, Y., Srivastava, G., Maddikunta, P. K. R., Raj, G. D., Jhaveri, R. H., Prabadevi, B., Wang, W., Vasilakos, A. V., & Gadekallu, T. R. (2024). GPT (Generative Pre-Trained Transformer) - A Comprehensive Review on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions. *IEEE Access*, 12, 54608-54649. <https://doi.org/10.1109/access.2024.3389497>

Yu, X., Tang, L., Long, L., & Sina, M. (2024). Comparison of deep and conventional machine learning models for prediction of one supply chain management distribution cost. *Scientific Reports*, 14(1), 24195.  
<https://doi.org/10.1038/s41598-024-75114-9>

Zeng, Q. (2024). Research on Transportation Route Planning and Vehicle Scheduling Based on Optimization Algorithm in Cold Chain Logistics. *Proceeding of the International Conference on Telecommunications and Power Electronics (TELEPE)*, 574-578.  
<https://doi.org/10.1109/telepe64216.2024.00109>

Zeng, Z., Watson, W., Cho, N., Rahimi, S., Reynolds, S., Balch, T., & Veloso, M. (2023). FlowMind: Automatic Workflow Generation with LLMs. *4th ACM International Conference on AI in Finance*, 73-81. <https://doi.org/10.1145/3604237.3626908>

Zhan, J. X., Ling, Z., Xu, Z., Guo, L., & Zhuang, S. (2024). Driving efficiency and risk management in finance through AI and RPA. *Advanced Computing Systems*, 4(5), 189-197.  
<https://doi.org/10.69987/JACS.2024.40501>

Zhu, B., & Vuppala, C. (2024). Enhancing Supply Chain Efficiency Through Retrieve-Augmented Generation Approach in Large Language Models. *Proceeding of the IEEE 10th International Conference on Big Data Computing Service and Machine Learning Applications*, 117-121.  
<https://doi.org/10.1109/bigdataservice62917.2024.00025>