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Abstract: Accurate prediction of chronic diseases is critical for proactive healthcare 

management. This paper proposes a Multi-feature Propagation Analysis-based Deep 

Learning Model (MPADM) to address this challenge. The model integrates diverse 

patient data, including medical, diagnostic, genetic, and historical features, collected 

from multiple sources. After preprocessing, the network is trained to calculate 

distinct Propagation Weights (PWs) for each feature category, Diagnosis 

Propagation Weight (DPW), Genetic Propagation Weight (GPW), and Historical 

Propagation Weight (HPW). These weights, estimated across different disease 

classes, are aggregated to generate a final predictive score for chronic diseases. To 

support clinical decision-making, the model also computes a Treatment Support (TS) 
metric, ranking hospitals and medical practitioners for user recommendation. 

Implemented with a web-based interface for accessibility, the MPADM model 

demonstrates enhanced efficacy, significantly improving prediction accuracy and the 

quality of therapeutic recommendations compared to existing benchmarks. 

 

Keywords: Deep Learning, Disease Prediction, Chronic Diseases, Web Inference, 

Recommendation, MPADM 

 

Introduction 

Rapidly evolving modern lifestyles have contributed 

to an increased prevalence of diverse diseases, placing 

significant strain on human health and healthcare systems. 

While some of these conditions are treatable, others 

remain chronic or incurable. In either case, early and 

accurate diagnosis is critical, as it enables medical 

practitioners to administer effective treatments, manage 

symptoms, and improve patients' quality of life. Diagnosis 

typically relies on identifying a set of symptoms. 

However, this process is complicated by symptom 

overlap, where multiple diseases present with similar 

clinical signs, making definitive identification 

challenging. This diagnostic uncertainty underscores the 

growing need for intelligent decision-support systems. 

Such systems can analyze patient-reported symptoms and 

provide data-driven recommendations to assist clinicians 

in reaching a conclusive diagnosis. 

Chronic diseases, such as diabetes, hypertension, and 

cardiac conditions, are long-term health issues that cannot 

be cured but can be managed with effective treatment. 

Diagnosis typically begins with identifying a patient’s 

symptoms, which medical practitioners analyze to reach a 

clinical conclusion. However, this process is susceptible 

to human error in classification or prediction. To mitigate 

this limitation, researchers have developed and 

implemented clinical decision support systems designed 

to enhance diagnostic accuracy and consistency. 

Various computational techniques have been 

employed for disease prediction, each with inherent 

strengths and limitations. Traditional methods include 

Support Vector Machines (SVM), which classify samples 

by maximizing the margin between different disease 

classes, and Genetic Algorithms (GA), which optimize 

classification by evaluating the fitness value of candidate 

solutions. Ensemble methods improve robustness by 

aggregating predictions from multiple models derived 

from medical records. Furthermore, algorithms such as 

decision trees, self-organizing maps, and neural networks 
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have also been widely applied to this task. However, 

despite their utility, these existing approaches often 

struggle to achieve the high levels of classification 

accuracy and predictive reliability required for robust 

clinical decision support. 

Disease prediction involves identifying potential 

illnesses by analyzing structured data, such as 

questionnaire responses collected via online platforms. 

Numerous computational approaches exist that utilize 

these user-provided answers to perform diagnostic 

classification. A key challenge in such systems lies in 

designing effective symptom inference, as users typically 

lack technical medical knowledge. For instance, a patient 

with a bacterial skin infection might only report the 

symptom of itching. To accurately infer the underlying 

condition, the system must pose a targeted series of 

queries, such as the presence of itching, pain, or diarrhea, 

and then process this textual data to extract meaningful 

clinical features for prediction. 

While traditional machine learning algorithms, such as 

Support Vector Machines (SVM), Decision Trees, Self-

Organizing Maps (SOM), and Genetic Algorithms (GA), 

can process various datasets, they often struggle with 

missing features and lack scalability when handling large 

volumes of data. Model accuracy is highly dependent on 

sample size, which limits their effectiveness in 

comprehensive disease prediction. Deep learning 

architectures offer a robust alternative, as they are 

inherently suited to managing high-dimensional data and 

extracting complex patterns. To leverage this capability, 

this article proposes a deep learning-based system 
designed for scalable and accurate disease prediction. The 

system employs a web interface to collect symptom data 

across diverse geographical locations, utilizing agent 

containers for efficient and standardized data aggregation. 

This collected data is merged, preprocessed, and used to 

extract discriminative features for training a deep neural 

network. The core of our model lies in its Multi-feature 

Propagation Analysis, which evaluates how user-reported 

symptoms propagate across different disease categories to 

infer the most probable condition. This integrated 

approach forms the basis of our proposed Web-based 

Multi-feature Propagation Analysis Model (MPADM) for 
effective disease prediction and treatment 

recommendation. 

Related Works 

This section reviews relevant computational 

approaches for disease prediction and recommendation. 

Akter et al. (2021) proposed a computer-aided diagnostic 

system based on deep learning to predict Chronic Kidney 

Disease (CKD) using various clinical features. Similarly, 

Ge et al. (2020) introduced a multi-label neural network 

(ML-NN) model that applies multi-label learning 

techniques for chronic disease prediction. These studies 

demonstrate the growing application of neural networks 

in medical diagnostics but primarily focus on single data 

sources or specific learning paradigms. 

Vasquez-Morales et al. (2019) proposed a neural 

network classifier for assessing Chronic Renal Disease 

(CRD) risk, integrating demographic and medical data 

through a Case-Based Reasoning (CBR) framework. 

Similarly, Wu et al. (2021) designed a mobile-based 

medical system that employs a Combined Sparse 

Autoencoder (CSAE) algorithm for classification, 

leveraging multiple data sources within a deep neural 

network architecture. For handling data imbalance and 

cross-domain challenges, Wang et al. (2020) introduced a 

Balanced Probability Distribution (BPD) scheme, which 

utilizes instance-based cascaded transfer learning for 

weight distribution and incorporates a cross-domain 

feature filtering algorithm. Comparative analyses have 

also been conducted, such as the work by Antony et al. 

(2021), which evaluates the performance of unsupervised 

methods like K-means clustering and DBSCAN. Further 

advancing predictive modeling, Wang et al. (2021) 

developed a tensor factorization model that integrates 

clinical and sequential factors from electronic health 

records to uncover latent patterns for chronic disease 

prediction. Complementing this, an adaptive group 

regularization scheme by Faruqui et al. (2021b) employs 

Gaussian Mixture Model (GMM) clustering to learn 

underlying data structures, thereby enhancing disease 

prediction accuracy. 

Yang et al. (2021) presented a predictive analysis model 

designed to forecast Multiple Chronic Conditions (MCC) 

specifically within working populations. In a related 

approach, Bravo et al. (2021) proposed a holistic data 

mining scheme that incorporates user feedback features to 

enhance disease prediction accuracy. 

An experimental analysis of various machine learning 

algorithms for Chronic Kidney Disease (CKD) 

classification was conducted by Khan et al. (2020), using 

a labeled kidney patient dataset. Shifting focus to 

continuous monitoring, Wu et al. (2022) proposed a 

scheme employing wearable devices to track lifestyle and 

environmental factors in both indoor and outdoor settings. 

In the realm of neural network-based prediction, Parab et 

al. (2020) introduced a back-propagation artificial neural 

network (BP-ANN) model, integrating partial least 

squares regression for classification. For dynamic and 

temporal data modeling, Faruqui et al. (2021a) developed 

a dynamic functional continuous-time Bayesian network, 

utilizing tensor-based control charts derived from 

multilinear principal component analysis. To leverage 

diverse data sources, Chen et al. (2021) proposed a Hybrid 

Deep Transfer Learning model for stroke risk prediction 

(HDTL-SRP), which integrates knowledge structures 

collected from various origins. Finally, Bashir et al. 

(2021) presented a comprehensive unsupervised 
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framework that employs multiple machine learning 

models for predictive analysis. 

Alanazi (2022) presented a chronic condition 

prediction model that combines Convolutional Neural 

Networks (CNN) for feature extraction with K-Nearest 

Neighbors (KNN) for classification, utilizing lifestyle-

related features. Rajeashwari and Arunesh (2022) 

conducted a comparative analysis of machine learning 

algorithms across multiple datasets to identify an optimal 

model for effective chronic disease prediction. Debal and 

Sitote (2022) proposed a multi-classification framework 

employing Random Forest (RF), Support Vector Machine 

(SVM), and Decision Tree (DT) as base classifiers. 

Further refining ensemble methods, Kavi Priya and 

Saranya (2022) introduced a hybrid approach integrating 

a Multi-Objective Firefly Optimization Algorithm 

(MOFFA) with Random Forest to generate heterogeneous 

decision trees. Advancing into relational data modeling, 

Lu et al. (2021) developed a Graph Neural Network 

(GNN) model that constructs a weighted patient network 

for feature extraction before applying GNN for disease 

prediction. In parallel, clinical and epidemiological 

studies have provided critical data and perspectives: 

Molla et al. (2022) conducted an institutional cross-

sectional study for detailed analysis of heart failure 

patients, while Ibrahim and Lawrence (2022) performed a 

service evaluation using monthly random sampling. 

Zheng et al. (2021) specifically investigated the impact of 

epidemiologic features, including behavioral and 

demographic factors, on prediction accuracy. For 

specialized conditions, Sampath et al. (2021) designed a 

region-based deep learning model for Alzheimer's stage 

prediction using volumetric brain features. 

Complementing data-driven approaches, Ramkumar et al. 

(2021) proposed a healthcare monitoring scheme that 

leverages IoT devices for continuous patient health 

tracking to aid in early disease prediction.  

Research Gap 

The literature review reveals several persistent 

limitations. Existing models, such as the KNN-CNN 

hybrid, rely on narrow feature sets (e.g., lifestyle or 

clinical data alone), while multi-classification approaches 

often use limited classifiers. Critically, no existing 

framework integrates the comprehensive range of 

diagnostic, clinical, and lifestyle features necessary for 

robust prediction. Furthermore, these models are typically 

trained on limited datasets, which constrains their 

predictive accuracy and recommendation utility. To 

address these gaps, this research is motivated to develop 

a model trained on a large-scale, multi-feature dataset 

collected via a web-based platform with agent support. 

Our objective is to enhance both disease prediction 

performance and the quality of clinical recommendations. 

Materials and Methods 

Design and Implementation of MPADM 

The proposed Multi-feature Propagation Analysis 

Deep Learning Model (MPADM) follows an integrated 

workflow for chronic disease prediction and treatment 

recommendation. The architecture begins by ingesting 

two primary data streams: a historical medical dataset and 

real-time symptom inputs collected through a web 

interface. To ensure comprehensive and geographically 

diverse data, mobile software agents are deployed to 

gather records from distributed sources. The aggregated 

data is first preprocessed using a feature discrimination 

normalizer to standardize and clean the inputs. From this 

refined dataset, four key feature categories are extracted: 

medical, diagnostic, genetic, and historical. 

These features are used to train a deep neural network, 

where individual neurons are initialized to represent 

specific elements of the feature set. The core innovation 

of MPADM lies in its propagation analysis. During 

inference, the model calculates distinct, learnable 

Propagation Weights (PWs) for each feature category: a 

Diagnosis Propagation Weight (DPW), a Genetic 

Propagation Weight (GPW), and a Historical Propagation 

Weight (HPW). Each neuron estimates unique sets of 

DPW, GPW, and HPW across different disease classes. 

These weights are subsequently aggregated to compute a 

final composite PW for each potential chronic disease, 

enabling the prediction. 

Beyond prediction, the model generates a practical 

Treatment Support (TS) metric. This metric evaluates and 

ranks hospitals and medical practitioners based on the 

specific predicted condition and relevant patient features. 

The final output presented to the user comprises both the 

disease prediction and a ranked list of recommended 

healthcare providers. The following sections detail each 

architectural component shown in Figure 1. 

Data Collection 

This component is responsible for aggregating 

medical data from distributed sources. The system 

employs a mobile agent framework, guided by a 

predefined data taxonomy. This taxonomy serves as a 

metadata schema that maps specific data types to their 

storage locations. Based on this mapping, the system 

dynamically generates and deploys a corresponding 

number of software agents to each identified source. 

These mobile agents are then dispatched to their 

respective remote locations. Upon arrival, each agent 

autonomously accesses, reads, and securely retrieves the 

relevant data records, transmitting them back to a central 

repository for consolidation.  
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Fig. 1: Working structure of MPADM model 
 

Algorithm 1 

Inputs: 

 DaT: Data Taxonomy 

 Mda: Local Medical Data Repository 

Outputs: 

 Mda: Updated Medical Data Repository 

Procedure: 

1. Fetch DaT, Mda. 
2. Identify all unique source locations from DaT. 

Let Ls = {location1, ..., locationn} where n = |DaT|. 
3. For each remote location l in Ls: 

1. Initialize a mobile agent Mag with parameters: 
(Target_Location = l, Home_Address). 

2. Migrate Mag to the target remote location l. 
3. Extract all relevant medical data tuples from l. 

Let Da = {tuple1, ..., tuplek} be the dataset 
retrieved from l. 

4. Return Mag (with Da) to the Home_Address. 
5. Merge the retrieved data Da with the central 

repository. 
4. End 
5. Release the updated Mda repository. 

 

Feature Discrimination Normalizer 

The Feature Discrimination Normalizer (FDN) 
algorithm serves as a preprocessing module designed to 

enhance data quality for downstream prediction tasks. It 

operates by first scanning the entire input dataset to 
identify all unique features present. Subsequently, it 

evaluates each data tuple's relevance and consistency 

through a Tuple Fitness Score (TFS). This score 

quantitatively assesses a tuple's suitability. considering 
factors such as completeness, outlier status, and 

coherence with the overall dataset distribution. Tuples 

falling below a predefined TFS threshold are filtered out, 

while those meeting the criteria are retained. The output 
is a normalized, high-fidelity dataset primed for effective 

model training and robust disease prediction. Selected 

tuples selected are utilized for feature extraction. 
 

Algorithm 2 

Inputs: 

 Ms: Raw Medical Dataset 

 TH: Fitness Threshold 

Outputs: 

 Pmd: Preprocessed Medical Dataset 

Procedure: 

1. Load the raw dataset Ms. 
2. Extract the global feature set 

Let Fes = {f1, ..., fn} be the set of all unique features 
present in Ms. 

3. For each tuple T in Ms: 
1. Calculate Tuple Fitness Score (TFS) 

∑ 𝐹𝑒𝑠(𝑖)∈𝑇
𝑠𝑖𝑧𝑒(𝐹𝑒𝑠)
𝑖=1

𝑆𝑖𝑧𝑒(𝑇)
×

∑ 𝑇(𝑖)!=𝑛𝑢𝑙𝑙
𝑠𝑖𝑧𝑒(𝑇)
𝑖=1

𝑆𝑖𝑧𝑒(𝑇)
  

2. If TFS > TH then 
   Add tuple T to the preprocessed dataset Pmd 
End 

4. End 

5. Return Pmd. 

Feature Extraction 

The proposed model integrates a multi-source feature 
vector composed of four categories: medical, diagnostic, 

genetic, and historical features. These features are 
systematically extracted from the preprocessed dataset to 
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form a comprehensive input representation for the 

prediction model. 
For instance, diagnostic features are extracted for each 

patient tuple T as a vector comprising six key clinical 

indicators: 
 
𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 =  [BMI, BS, HbA1C, Pr, Col, Cr]  
 

Where: 
 
 BMI: Body Mass Index 

 BS: Blood Sugar (fasting) 

 HbA1C: Glycated Hemoglobin (3-month average 

blood sugar) 

 Pr: Blood Pressure (systolic/diastolic) 

 Col: Cholesterol level 

 Cr: Creatinine level 

 

Similarly, genetic features are captured as a vector 

representing familial medical history:  

 

Genetic Features = [PD, PH, PC]  
 

Where: 
 
 PD: Parental History of Diabetes 

 PH: Parental History of Hypertension 

 PC: Parental History of Cardiac Disease 

 

These feature vectors are subsequently standardized 

and concatenated to form the complete input for the deep 

neural network. 

Finally, the model extracts historical features by 

identifying consistent clinical patterns preceding a disease 
diagnosis. These features are derived from the sequences 

of medical indicators recorded prior to the onset of a 

condition. 

For example, for diabetes prediction, a historical 

pattern is defined by a vector of clinical markers observed 

together in past cases, along with the eventual diagnosis 

{BMI, BS, HbA1C, Pr, Col, Cr, Disease_Status}. 

A feature is considered historically significant if it 

appears consistently across confirmed cases of the 

disease. To quantify this, a Feature Frequency Score 

(FFS) is calculated for each candidate feature f. The FFS 
represents the proportion of disease-positive records in 

the preprocessed dataset Pmd in which the feature is 

present: 

 

𝐹𝐹𝑆 =
∑ 𝑃𝑚𝑑(𝑖).𝑓==𝑇𝑟𝑢𝑒

𝑆𝑖𝑧𝑒(𝑃𝑚𝑑)
𝑖=1

𝑆𝑖𝑧𝑒(𝑃𝑚𝑑)
  

 

Features exceeding a predefined FFS threshold are 

retained as validated historical indicators. By encoding 

these recurrent, pre-diagnostic patterns, the model 

leverages longitudinal evidence to improve the robustness 

of its predictions. 

DCNN Training 

The proposed method processes the multi-dimensional 

feature vectors generated during the feature extraction 

phase. These vectors encapsulate distinct sets of medical, 
diagnostic, genetic, and historical features. A deep neural 

network architecture is constructed with n intermediate 

(hidden) layers, each containing k neurons. Each neuron 

is initialized to correspond to specific features within the 

input vector. The core function of these neurons is to 

compute specialized disease propagation weights that 

quantify the influence of their respective features. Finally, 

neurons in the output layer aggregate these weighted 

signals to produce a comprehensive propagation score for 

each target disease class, enabling the final prediction. 

 Disease Inference 

The proposed model generates disease predictions by 

synthesizing several specialized weight metrics. The 

process begins by extracting feature vectors from the 

input sample or reported symptoms. These features are 

propagated through the neural network, where hidden 

layer neurons compute category-specific propagation 

weights: Diagnosis Propagation Weight (DPW) from 

diagnostic features, Genetic Propagation Weight (GPW) 

from genetic features, and Historical Propagation Weight 

(HPW) from historical patterns. The output layer neuron 

aggregates these individual weights to calculate a final, 

composite Propagation Weight (PW) for each potential 

disease class. The class with the highest PW value is 

subsequently identified as the model's prediction. 

 

Algorithm 3 

Inputs: 

 DCNN: Trained Deep Convolutional Neural 
Network 

 Ss: Input sample 

Outputs: 

 Dc: Disease Class 

Procedure: 
1. Propagate the sample Ss through the network DCNN 

to obtain the feature embeddings at each layer. 
2. For each layer l: 

3. For each neuron N: 

4. For each neuron Dc: 

5. Compute the Diagnosis Propagation Weight 

(DPW) as the product of normalized inverse distances 
for key diagnostic features: 

𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖).𝐵𝑀𝐼,𝑆𝑆.𝐵𝑀𝐼)
𝑖=1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄

𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖).𝐵𝑆,𝑆𝑆.𝐵𝑆)
𝑖=1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄

×

𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖).𝐻𝑏𝐴1𝑐,𝑆𝑆.𝐻𝑏𝐴1𝑐)
𝑖=1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄

𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖).𝐶𝑟,𝑆𝑆.𝐶𝑟)
𝑖=1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄

×

𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖).𝑃𝑟,𝑆𝑆.𝑃𝑟)
𝑖=1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄

𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖).𝐶𝑜𝑙,𝑆𝑆.𝐶𝑜𝑙)
𝑖=1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄
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6. Compute the Genetic Propagation Weight (GPW) 

using genetic features: 
𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖). 𝑃𝐷, 𝑆𝑆. 𝑃𝐷)
𝑖 = 1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄

𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖). 𝑃𝐻, 𝑆𝑆. 𝑃𝐻)
𝑖 = 1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄

×  

𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖). 𝑃𝐶, 𝑆𝑆. 𝑃𝐶)
𝑖 = 1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄
 

7. Compute the Historical Propagation Weight 

(HPW) based on historical pattern similarity: 
𝑆𝑖𝑧𝑒(𝐷𝐶)

𝐷𝑖𝑠𝑡(𝐷𝑐(𝑖).𝐻𝑃==,𝑆𝑆.𝐻𝑃)
𝑖=1

𝑆𝑖𝑧𝑒(𝐷𝐶)

⁄

 𝑆𝑖𝑧𝑒(𝐷𝐶)
  

8. Compute the neuron's composite Propagation 

Weight (PW) for disease class Dc: 

9. End For 
10. End For 

11. End For 
12. Disease class DC = Populate class with Max PW 

 

Recommendation 

Following disease class identification, the model 

generates personalized recommendations by computing a 

Treatment Support (TS) metric for relevant hospitals and 

medical practitioners. The TS value is derived from 

historical treatment data, quantifying the documented 

success rates of each provider for the specific predicted 

condition. Healthcare providers are then ranked in 

descending order of their TS scores. This ranked list is 

presented to the user as an actionable set of 

recommendations, facilitating informed decisions about 

subsequent care. 

 

Algorithm 4 

Inputs: 

 Mds: Medical Dataset 

Outputs: 

 Rs: Ranked list of healthcare providers for the 
predicted disease class, sorted by Treatment 

Support (TS) score 

Procedure: 
6. Load the medical dataset Mds. 
7. Extract the unique set of healthcare providers for the 

predicted disease class: 

𝐻𝑃𝑆 = ∑ (𝑀𝑑𝑠(𝑖). 𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙 ∋ 𝐻𝑝𝑠) ∪ 𝐻𝑃𝑆

𝑆𝑖𝑧𝑒(𝑀𝑑𝑠)

𝑖=1

 

8. For each provider H in Hps: 

Compute Treatment Support TS 
𝑆𝑖𝑧𝑒(𝑀𝑑𝑠)

𝐶𝑜𝑢𝑛𝑡(𝑀𝑑𝑠(𝑖).𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙==𝐻 && 𝑀𝑑𝑠(𝑖).𝑆𝑡𝑎𝑡𝑢𝑠==𝑆𝑢𝑐𝑐𝑒𝑠𝑠)
𝑖=1

𝑆𝑖𝑧𝑒(𝑀𝑑𝑠)

𝐶𝑜𝑢𝑛𝑡(𝑀𝑑𝑠(𝑖).𝐻𝑜𝑠𝑝𝑖𝑡𝑎𝑙==𝐻)
𝑖=1

  

9. End 
10. Recommendation Rs = Rank the hospitals according 

to TS. 

Results and Discussion 

The MPADM model was implemented in Python and 

its performance was rigorously evaluated using standard 

predictive metrics. To ensure a robust assessment, the 

evaluation was conducted on a composite dataset formed 

by merging three publicly available sources: the UCI 

Machine Learning Repository, Chronic Disease Data 

(CDC), and relevant datasets from Kaggle. Details of 

these datasets, including their size, features, and origin, 

are provided in Table 1. The subsequent analysis 

measures the model's efficacy across several key 

performance indicators. 

 
Table 1: Evaluation Details 

Key Detail 

Data sets Multiple Sources (UCI, CDC, Kaggle) 
Total Features 30 

No of Locations 10 
Total Tuples 1 million 

Disease Prediction Accuracy 

The model's prediction accuracy is measured using 
classification accuracy, calculated as the ratio of correct 

predictions to total predictions made: 

 

DPA = 
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
× 100 

 

Where: 

 

 TP: True positive 

 TN: True negative 
 

As shown in Table 2, the MPADM model 

demonstrates superior predictive accuracy. Its 

architecture, which facilitates the collection and 

integration of large-scale, geographically diverse datasets, 

directly contributes to this enhanced performance. 

 
Table 2: Disease Prediction Accuracy 

Model Samples 

300,000  500,000 1 million 

CSAE 67 74 79 
HDTL-SRP 72 78 82 
MOFFA 76 81 86 
MPADM 83 87 93 

 

As shown in Fig. 2, the MPADM model demonstrates 

superior prediction accuracy. 

False Prediction Ratio 

The False Prediction Ratio (FPR) quantifies an 
algorithm's error rate, calculated as the proportion of false 

positive and false negative predictions relative to the total 

predictions. 
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FPR = 
𝐹𝑃+𝐹𝑁

𝑇𝑂𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
× 100 

 

Where: 

 

 FP: False positive 

 FN: false negative 

 

As shown in Table 3, the MPADM model yields a 
significantly lower False Prediction Ratio (FPR) 

compared to other approaches. This improved reliability 

is attributed to the model's capacity to integrate large-

scale, diverse datasets via mobile agents, reducing 

uncertainty and classification error. 

 

 

 

Fig. 2: Disease Prediction Accuracy 

 
Table 3: False Prediction Ratio 

Model Samples 

300,000  500,000 1 million 

CSAE 33 26 21 
HDTL-SRP 28 22 18 
MOFFA 24 19 14 
MPADM 17 13 7 

 

As shown in Fig. 3, the MPADM model achieves a 

lower false prediction ratio than all other benchmark 

models. 

Time Complexity 

The average inference time measures the 

computational efficiency of a model, calculated as the 

total time taken for all predictions divided by the number 

of predictions.  

 

Time Complexity = 
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑓𝑜𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
× 100 

 

As shown in Table 4 and Fig. 4, the MPADM model 

achieves a lower average inference time than the 

benchmark models, indicating faster prediction. 

 
 
Fig. 3: False Prediction Ratio 
 
Table 4: Time Complexity in seconds 

Model Samples 

300,000  500,000 1 million 

CSAE 68 79 91 
HDTL-SRP 65 76 85 
MOFFA 56 69 81 
MPADM 37 53 67 

 

 
 
Fig. 4: Time complexity 

 

Conclusion 

This article presented the Multi-feature Propagation 

Analysis Deep Learning Model (MPADM) for chronic 

disease prediction and treatment recommendation. The 

model aggregates medical data from distributed 

sources via mobile agents, preprocesses it using a 

feature discrimination normalizer, and extracts 

diagnostic, genetic, and historical features. These 

features are used to train a deep neural network, which, 

during inference, calculates specialized propagation 
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weights, Diagnosis Propagation Weight (DPW), 

Genetic Propagation Weight (GPW), and Historical 

Propagation Weight (HPW). These weights are 

synthesized into a final Propagation Weight (PW) to 

identify the most probable disease class. Additionally, 

the model provides actionable recommendations by 
ranking healthcare providers based on a Treatment 

Support (TS) metric. Evaluation results demonstrate 

that MPADM achieves a prediction accuracy of 93% 

with low computational latency. Future work may 

enhance the model by incorporating region-centric 

demographic and lifestyle features to further improve 

prediction personalization and accuracy.  
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