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Abstract: Accurate prediction of chronic diseases is critical for proactive healthcare
management. This paper proposes a Multi-feature Propagation Analysis-based Deep
Learning Model (MPADM) to address this challenge. The model integrates diverse
patient data, including medical, diagnostic, genetic, and historical features, collected
from multiple sources. After preprocessing, the network is trained to calculate
distinct Propagation Weights (PWs) for each feature category, Diagnosis
Propagation Weight (DPW), Genetic Propagation Weight (GPW), and Historical
Propagation Weight (HPW). These weights, estimated across different disease
classes, are aggregated to generate a final predictive score for chronic diseases. To
support clinical decision-making, the model also computes a Treatment Support (TS)
metric, ranking hospitals and medical practitioners for user recommendation.
Implemented with a web-based interface for accessibility, the MPADM maodel
demonstrates enhanced efficacy, significantly improving prediction accuracy and the
quality of therapeutic recommendations compared to existing benchmarks.

Keywords: Deep Learning, Disease Prediction, Chronic Diseases, Web Inference,
Recommendation, MPADM

Introduction

Rapidly evolving modern lifestyles have contributed
to an increased prevalence of diverse diseases, placing
significant strain on human health and healthcare systems.
While some of these conditions are treatable, others
remain chronic or incurable. In either case, early and
accurate diagnosis is critical, as it enables medical
practitioners to administer effective treatments, manage
symptoms, and improve patients' quality of life. Diagnosis
typically relies on identifying a set of symptoms.
However, this process is complicated by symptom
overlap, where multiple diseases present with similar
clinical ~signs, making definitive identification
challenging. This diagnostic uncertainty underscores the
growing need for intelligent decision-support systems.
Such systems can analyze patient-reported symptoms and
provide data-driven recommendations to assist clinicians
in reaching a conclusive diagnosis.

Chronic diseases, such as diabetes, hypertension, and
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cardiac conditions, are long-term health issues that cannot
be cured but can be managed with effective treatment.
Diagnosis typically begins with identifying a patient’s
symptoms, which medical practitioners analyze to reach a
clinical conclusion. However, this process is susceptible
to human error in classification or prediction. To mitigate
this limitation, researchers have developed and
implemented clinical decision support systems designed
to enhance diagnostic accuracy and consistency.

Various computational techniques have been
employed for disease prediction, each with inherent
strengths and limitations. Traditional methods include
Support Vector Machines (SVM), which classify samples
by maximizing the margin between different disease
classes, and Genetic Algorithms (GA), which optimize
classification by evaluating the fitness value of candidate
solutions. Ensemble methods improve robustness by
aggregating predictions from multiple models derived
from medical records. Furthermore, algorithms such as
decision trees, self-organizing maps, and neural networks
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have also been widely applied to this task. However,
despite their utility, these existing approaches often
struggle to achieve the high levels of classification
accuracy and predictive reliability required for robust
clinical decision support.

Disease prediction involves identifying potential
illnesses by analyzing structured data, such as
questionnaire responses collected via online platforms.
Numerous computational approaches exist that utilize
these user-provided answers to perform diagnostic
classification. A key challenge in such systems lies in
designing effective symptom inference, as users typically
lack technical medical knowledge. For instance, a patient
with a bacterial skin infection might only report the
symptom of itching. To accurately infer the underlying
condition, the system must pose a targeted series of
queries, such as the presence of itching, pain, or diarrhea,
and then process this textual data to extract meaningful
clinical features for prediction.

While traditional machine learning algorithms, such as
Support Vector Machines (SVM), Decision Trees, Self-
Organizing Maps (SOM), and Genetic Algorithms (GA),
can process various datasets, they often struggle with
missing features and lack scalability when handling large
volumes of data. Model accuracy is highly dependent on
sample size, which limits their effectiveness in
comprehensive disease prediction. Deep learning
architectures offer a robust alternative, as they are
inherently suited to managing high-dimensional data and
extracting complex patterns. To leverage this capability,
this article proposes a deep learning-based system
designed for scalable and accurate disease prediction. The
system employs a web interface to collect symptom data
across diverse geographical locations, utilizing agent
containers for efficient and standardized data aggregation.
This collected data is merged, preprocessed, and used to
extract discriminative features for training a deep neural
network. The core of our model lies in its Multi-feature
Propagation Analysis, which evaluates how user-reported
symptoms propagate across different disease categories to
infer the most probable condition. This integrated
approach forms the basis of our proposed Web-based
Multi-feature Propagation Analysis Model (MPADM) for
effective  disease  prediction and  treatment
recommendation.

Related Works

This section reviews relevant computational
approaches for disease prediction and recommendation.
Akter et al. (2021) proposed a computer-aided diagnostic
system based on deep learning to predict Chronic Kidney
Disease (CKD) using various clinical features. Similarly,
Ge et al. (2020) introduced a multi-label neural network
(ML-NN) model that applies multi-label learning
techniques for chronic disease prediction. These studies

demonstrate the growing application of neural networks
in medical diagnostics but primarily focus on single data
sources or specific learning paradigms.

Vasquez-Morales et al. (2019) proposed a neural
network classifier for assessing Chronic Renal Disease
(CRD) risk, integrating demographic and medical data
through a Case-Based Reasoning (CBR) framework.
Similarly, Wu et al. (2021) designed a mobile-based
medical system that employs a Combined Sparse
Autoencoder (CSAE) algorithm for classification,
leveraging multiple data sources within a deep neural
network architecture. For handling data imbalance and
cross-domain challenges, Wang et al. (2020) introduced a
Balanced Probability Distribution (BPD) scheme, which
utilizes instance-based cascaded transfer learning for
weight distribution and incorporates a cross-domain
feature filtering algorithm. Comparative analyses have
also been conducted, such as the work by Antony et al.
(2021), which evaluates the performance of unsupervised
methods like K-means clustering and DBSCAN. Further
advancing predictive modeling, Wang et al. (2021)
developed a tensor factorization model that integrates
clinical and sequential factors from electronic health
records to uncover latent patterns for chronic disease
prediction. Complementing this, an adaptive group
regularization scheme by Faruqui et al. (2021b) employs
Gaussian Mixture Model (GMM) clustering to learn
underlying data structures, thereby enhancing disease
prediction accuracy.

Yang et al. (2021) presented a predictive analysis model
designed to forecast Multiple Chronic Conditions (MCC)
specifically within working populations. In a related
approach, Bravo et al. (2021) proposed a holistic data
mining scheme that incorporates user feedback features to
enhance disease prediction accuracy.

An experimental analysis of various machine learning
algorithms for Chronic Kidney Disease (CKD)
classification was conducted by Khan et al. (2020), using
a labeled kidney patient dataset. Shifting focus to
continuous monitoring, Wu et al. (2022) proposed a
scheme employing wearable devices to track lifestyle and
environmental factors in both indoor and outdoor settings.
In the realm of neural network-based prediction, Parab et
al. (2020) introduced a back-propagation artificial neural
network (BP-ANN) model, integrating partial least
squares regression for classification. For dynamic and
temporal data modeling, Faruqui et al. (2021a) developed
a dynamic functional continuous-time Bayesian network,
utilizing tensor-based control charts derived from
multilinear principal component analysis. To leverage
diverse data sources, Chen et al. (2021) proposed a Hybrid
Deep Transfer Learning model for stroke risk prediction
(HDTL-SRP), which integrates knowledge structures
collected from various origins. Finally, Bashir et al.
(2021) presented a comprehensive unsupervised
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framework that employs multiple machine learning
models for predictive analysis.

Alanazi (2022) presented a chronic condition
prediction model that combines Convolutional Neural
Networks (CNN) for feature extraction with K-Nearest
Neighbors (KNN) for classification, utilizing lifestyle-
related features. Rajeashwari and Arunesh (2022)
conducted a comparative analysis of machine learning
algorithms across multiple datasets to identify an optimal
model for effective chronic disease prediction. Debal and
Sitote (2022) proposed a multi-classification framework
employing Random Forest (RF), Support Vector Machine
(SVM), and Decision Tree (DT) as base classifiers.
Further refining ensemble methods, Kavi Priya and
Saranya (2022) introduced a hybrid approach integrating
a Multi-Objective Firefly Optimization Algorithm
(MOFFA) with Random Forest to generate heterogeneous
decision trees. Advancing into relational data modeling,
Lu et al. (2021) developed a Graph Neural Network
(GNN) model that constructs a weighted patient network
for feature extraction before applying GNN for disease
prediction. In parallel, clinical and epidemiological
studies have provided critical data and perspectives:
Molla et al. (2022) conducted an institutional cross-
sectional study for detailed analysis of heart failure
patients, while Ibrahim and Lawrence (2022) performed a
service evaluation using monthly random sampling.
Zheng et al. (2021) specifically investigated the impact of
epidemiologic features, including behavioral and
demographic factors, on prediction accuracy. For
specialized conditions, Sampath et al. (2021) designed a
region-based deep learning model for Alzheimer's stage
prediction  using  volumetric  brain  features.
Complementing data-driven approaches, Ramkumar et al.
(2021) proposed a healthcare monitoring scheme that
leverages loT devices for continuous patient health
tracking to aid in early disease prediction.

Research Gap

The literature review reveals several persistent
limitations. Existing models, such as the KNN-CNN
hybrid, rely on narrow feature sets (e.g., lifestyle or
clinical data alone), while multi-classification approaches
often use limited classifiers. Critically, no existing
framework integrates the comprehensive range of
diagnostic, clinical, and lifestyle features necessary for
robust prediction. Furthermore, these models are typically
trained on limited datasets, which constrains their
predictive accuracy and recommendation utility. To
address these gaps, this research is motivated to develop
a model trained on a large-scale, multi-feature dataset
collected via a web-based platform with agent support.
Our objective is to enhance both disease prediction
performance and the quality of clinical recommendations.

Materials and Methods
Design and Implementation of MPADM

The proposed Multi-feature Propagation Analysis
Deep Learning Model (MPADM) follows an integrated
workflow for chronic disease prediction and treatment
recommendation. The architecture begins by ingesting
two primary data streams: a historical medical dataset and
real-time symptom inputs collected through a web
interface. To ensure comprehensive and geographically
diverse data, mobile software agents are deployed to
gather records from distributed sources. The aggregated
data is first preprocessed using a feature discrimination
normalizer to standardize and clean the inputs. From this
refined dataset, four key feature categories are extracted:
medical, diagnostic, genetic, and historical.

These features are used to train a deep neural network,
where individual neurons are initialized to represent
specific elements of the feature set. The core innovation
of MPADM lies in its propagation analysis. During
inference, the model calculates distinct, learnable
Propagation Weights (PWSs) for each feature category: a
Diagnosis Propagation Weight (DPW), a Genetic
Propagation Weight (GPW), and a Historical Propagation
Weight (HPW). Each neuron estimates unique sets of
DPW, GPW, and HPW across different disease classes.
These weights are subsequently aggregated to compute a
final composite PW for each potential chronic disease,
enabling the prediction.

Beyond prediction, the model generates a practical
Treatment Support (TS) metric. This metric evaluates and
ranks hospitals and medical practitioners based on the
specific predicted condition and relevant patient features.
The final output presented to the user comprises both the
disease prediction and a ranked list of recommended
healthcare providers. The following sections detail each
architectural component shown in Figure 1.

Data Collection

This component is responsible for aggregating
medical data from distributed sources. The system
employs a mobile agent framework, guided by a
predefined data taxonomy. This taxonomy serves as a
metadata schema that maps specific data types to their
storage locations. Based on this mapping, the system
dynamically generates and deploys a corresponding
number of software agents to each identified source.

These mobile agents are then dispatched to their
respective remote locations. Upon arrival, each agent
autonomously accesses, reads, and securely retrieves the
relevant data records, transmitting them back to a central
repository for consolidation.
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Data Collection

Medical Data Set

Feature Discrimination Normalizer
Feature Extraction

Trained Network I

Disease Prediction

Feature Discrimination Feature Extraction
Narmalizer
Test sample

DCNN Training

Recommendation Generation
Results

Fig. 1: Working structure of MPADM model

Algorithm 1
Inputs:
e DaT: Data Taxonomy
e Mda: Local Medical Data Repository
Outputs:
e Mda: Updated Medical Data Repository
Procedure:
1. Fetch DaT, Mda.
2. ldentify all unique source locations from DaT.
Let Ls = {location, ..., locationn} where n = |DaT]|.
3. For each remote location | in Ls:
1. Initialize a mobile agent Mag with parameters:
(Target_Location = I, Home_Address).
2. Migrate Mag to the target remote location I.
3. Extract all relevant medical data tuples from 1.
Let Da = {tupley, ..., tuplex} be the dataset
retrieved from I.
4. Return Mag (with Da) to the Home_Address.
5. Merge the retrieved data Da with the central
repository.

4. End
5. Release the updated Mda repository.

Feature Discrimination Normalizer

The Feature Discrimination Normalizer (FDN)
algorithm serves as a preprocessing module designed to
enhance data quality for downstream prediction tasks. It
operates by first scanning the entire input dataset to
identify all unique features present. Subsequently, it
evaluates each data tuple's relevance and consistency
through a Tuple Fitness Score (TFS). This score
quantitatively assesses a tuple's suitability. considering
factors such as completeness, outlier status, and

coherence with the overall dataset distribution. Tuples
falling below a predefined TFS threshold are filtered out,
while those meeting the criteria are retained. The output
is a normalized, high-fidelity dataset primed for effective
model training and robust disease prediction. Selected
tuples selected are utilized for feature extraction.

Algorithm 2
Inputs:
e Ms: Raw Medical Dataset
e  TH: Fitness Threshold
Outputs:
e  Pmd: Preprocessed Medical Dataset
Procedure:
1. Load the raw dataset Ms.
2. Extract the global feature set
Let Fes = {fi, ..., f} be the set of all unique features
present in Ms.
3. Foreachtuple T in Ms:
1. Calculate Tuple Fitness Score (TFS)
237 peser 272N r)1=nuu
Size(T) Size(T)
2. If TFS > THthen
Add tuple T to the preprocessed dataset Pmd
End

4, End
5.  Return Pmd.

Feature Extraction

The proposed model integrates a multi-source feature
vector composed of four categories: medical, diagnostic,
genetic, and historical features. These features are
systematically extracted from the preprocessed dataset to
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form a comprehensive input representation for the
prediction model.

For instance, diagnostic features are extracted for each
patient tuple T as a vector comprising six key clinical
indicators:

Diagnostic Features = [BMI,BS,HbA1C,Pr, Col, Cr]
Where:

o BMI: Body Mass Index

. BS: Blood Sugar (fasting)

. HbA1C: Glycated Hemoglobin (3-month average
blood sugar)

. Pr: Blood Pressure (systolic/diastolic)

o Col: Cholesterol level

. Cr: Creatinine level

Similarly, genetic features are captured as a vector
representing familial medical history:

Genetic Features = [PD, PH, PC]

Where:

e PD: Parental History of Diabetes
e PH: Parental History of Hypertension
e PC: Parental History of Cardiac Disease

These feature vectors are subsequently standardized
and concatenated to form the complete input for the deep
neural network.

Finally, the model extracts historical features by
identifying consistent clinical patterns preceding a disease
diagnosis. These features are derived from the sequences
of medical indicators recorded prior to the onset of a
condition.

For example, for diabetes prediction, a historical
pattern is defined by a vector of clinical markers observed
together in past cases, along with the eventual diagnosis
{BMlI, BS, HbA1C, Pr, Col, Cr, Disease_Status}.

A feature is considered historically significant if it
appears consistently across confirmed cases of the
disease. To quantify this, a Feature Frequency Score
(FFS) is calculated for each candidate feature f. The FFS
represents the proportion of disease-positive records in
the preprocessed dataset Pmd in which the feature is
present:

_ Zf:izf(Pmd) Pmd(i).f==True
FFS = size(Pmd)

Features exceeding a predefined FFS threshold are
retained as validated historical indicators. By encoding
these recurrent, pre-diagnostic patterns, the model
leverages longitudinal evidence to improve the robustness
of its predictions.

DCNN Training

The proposed method processes the multi-dimensional
feature vectors generated during the feature extraction
phase. These vectors encapsulate distinct sets of medical,
diagnostic, genetic, and historical features. A deep neural
network architecture is constructed with n intermediate
(hidden) layers, each containing k neurons. Each neuron
is initialized to correspond to specific features within the
input vector. The core function of these neurons is to
compute specialized disease propagation weights that
quantify the influence of their respective features. Finally,
neurons in the output layer aggregate these weighted
signals to produce a comprehensive propagation score for
each target disease class, enabling the final prediction.

Disease Inference

The proposed model generates disease predictions by
synthesizing several specialized weight metrics. The
process begins by extracting feature vectors from the
input sample or reported symptoms. These features are
propagated through the neural network, where hidden
layer neurons compute category-specific propagation
weights: Diagnosis Propagation Weight (DPW) from
diagnostic features, Genetic Propagation Weight (GPW)
from genetic features, and Historical Propagation Weight
(HPW) from historical patterns. The output layer neuron
aggregates these individual weights to calculate a final,
composite Propagation Weight (PW) for each potential
disease class. The class with the highest PW value is
subsequently identified as the model's prediction.

Algorithm 3
Inputs:
e DCNN: Trained Deep Convolutional Neural
Network
e Ss: Input sample
Outputs:
e Dc: Disease Class
Procedure:

1. Propagate the sample Ss through the network DCNN
to obtain the feature embeddings at each layer.

For each layer I:

For each neuron N:

For each neuron Dc:

Compute the Diagnosis Propagation Weight
(DPW) as the product of normalized inverse distances
for key diagnostic features:

Size(DC) Size(DC)
DiSt(DC(i).EMI,SS.EMI)/ Dist(DC(i).HhAlC,SS.HbAlC/
Size(DC) x Size(DC) x

g wn

=1 =1

Size(DC) Size(DC)
Dist(Dc(i).BS,SS.BS) Dist(Dc(i).Cr,SS.CT)
i=1 i=1
Size(DC)

Size(DC)

Size(DC)
Dist(Dc(i).Pr,SS.PT)
i=1
Size(DC)

Size(DC)
Dist(Dc(i).ColSS.Col)
i=1
Size(DC)
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6. Compute the Genetic Propagation Weight (GPW)
using genetic features:

Size(DC)
Dist(Dc(i). PD, SS. PD/ Size(DC) /
i=1 Dist(Dc(i). PC, SS. PC)
Size(DC) T
Size(DC) x Size(DC)

Dist(Dc(i). PH,SS. PH)
i=1
Size(DC)

7. Compute the Historical Propagation Weight
(HPW) based on historical pattern similarity:

Size(DC)
Dist(Dc(i).HP==,SS.HP)
= /Size(DC)
Size(DC)

8. Compute the neuron's composite Propagation

Weight (PW) for disease class Dc:
9. End For
10. End For
11. End For
12. Disease class DC = Populate class with Max PW

Recommendation

Following disease class identification, the model
generates personalized recommendations by computing a
Treatment Support (TS) metric for relevant hospitals and
medical practitioners. The TS value is derived from
historical treatment data, quantifying the documented
success rates of each provider for the specific predicted
condition. Healthcare providers are then ranked in
descending order of their TS scores. This ranked list is
presented to the user as an actionable set of
recommendations, facilitating informed decisions about
subsequent care.

Algorithm 4
Inputs:
e  Mds: Medical Dataset
Outputs:
e Rs: Ranked list of healthcare providers for the
predicted disease class, sorted by Treatment
Support (TS) score
Procedure:
6. Load the medical dataset Mds.
7.  Extract the unique set of healthcare providers for the

predicted disease class:
Size(Mds)

HPS = z (Mds(i).Hospital 3 Hps) U HPS

i=1
8. For each provider H in Hps:
Compute Treatment Support TS
Size(Mds)
Count(Mds(i).Hospital==H && Mds(i).Status==Success)
i=1
Sizé(Mds)
Count(Mds(i).Hospital==H)
i=1

9. End
10. Recommendation Rs = Rank the hospitals according
to TS.

Results and Discussion

The MPADM model was implemented in Python and
its performance was rigorously evaluated using standard
predictive metrics. To ensure a robust assessment, the
evaluation was conducted on a composite dataset formed
by merging three publicly available sources: the UCI
Machine Learning Repository, Chronic Disease Data
(CDC), and relevant datasets from Kaggle. Details of
these datasets, including their size, features, and origin,
are provided in Table 1. The subsequent analysis
measures the model's efficacy across several key
performance indicators.

Table 1: Evaluation Details

Key Detail

Data sets Multiple Sources (UCI, CDC, Kaggle)
Total Features 30

No of Locations 10

Total Tuples 1 million

Disease Prediction Accuracy

The model's prediction accuracy is measured using
classification accuracy, calculated as the ratio of correct
predictions to total predictions made:

DPA = TP+TN

~ Total Prediction

100
Where:

e TP: True positive
e TN: True negative

in Table 2, the MPADM model
demonstrates  superior  predictive  accuracy. Its
architecture, which facilitates the collection and
integration of large-scale, geographically diverse datasets,
directly contributes to this enhanced performance.

As shown

Table 2: Disease Prediction Accuracy

Model Samples

300,000 500,000 1 million
CSAE 67 74 79
HDTL-SRP 72 78 82
MOFFA 76 81 86
MPADM 83 87 93

As shown in Fig. 2, the MPADM model demonstrates
superior prediction accuracy.

False Prediction Ratio

The False Prediction Ratio (FPR) quantifies an
algorithm's error rate, calculated as the proportion of false
positive and false negative predictions relative to the total
predictions.
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FPR = FP+FN

- TOtal Prediction

100

Where:

o FP: False positive
e FN: false negative

As shown in Table 3, the MPADM model yields a
significantly lower False Prediction Ratio (FPR)
compared to other approaches. This improved reliability
is attributed to the model's capacity to integrate large-
scale, diverse datasets via mobile agents, reducing
uncertainty and classification error.

100
80
60 -
40 -
20 A

0 .

Disease Prediction
Accuracy %

300,000 m500,000 =1 million

Fig. 2: Disease Prediction Accuracy

Table 3: False Prediction Ratio

Model Samples

300,000 500,000 1 million
CSAE 33 26 21
HDTL-SRP 28 22 18
MOFFA 24 19 14
MPADM 17 13 7

As shown in Fig. 3, the MPADM model achieves a
lower false prediction ratio than all other benchmark
models.

Time Complexity

The average inference time measures the
computational efficiency of a model, calculated as the
total time taken for all predictions divided by the number
of predictions.

Sum of all time taken for prediction
Total Prediction

Time Complexity = %X 100

As shown in Table 4 and Fig. 4, the MPADM model
achieves a lower average inference time than the
benchmark models, indicating faster prediction.

False Prediction Ratio %

CSAE  HDTL-SRP MOFFA MPADM

m 300,000 m=500,000 =1 million

Fig. 3: False Prediction Ratio

Table 4: Time Complexity in seconds

Model Samples
300,000 500,000 1 million
CSAE 68 79 91
HDTL-SRP 65 76 85
MOFFA 56 69 81
MPADM 37 53 67
100
4 90
c
8 80
s 70
£
> 60
< 50
9
g. 40
S 30
g 20
= 10
0
& Q e
s & & &
Q K Q
R N\

300,000 ® 500,000 ™ 1million

Fig. 4: Time complexity

Conclusion

This article presented the Multi-feature Propagation
Analysis Deep Learning Model (MPADM) for chronic
disease prediction and treatment recommendation. The
model aggregates medical data from distributed
sources via mobile agents, preprocesses it using a
feature discrimination normalizer, and extracts
diagnostic, genetic, and historical features. These
features are used to train a deep neural network, which,
during inference, calculates specialized propagation
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weights, Diagnosis Propagation Weight (DPW),
Genetic Propagation Weight (GPW), and Historical
Propagation Weight (HPW). These weights are
synthesized into a final Propagation Weight (PW) to
identify the most probable disease class. Additionally,
the model provides actionable recommendations by
ranking healthcare providers based on a Treatment
Support (TS) metric. Evaluation results demonstrate
that MPADM achieves a prediction accuracy of 93%
with low computational latency. Future work may
enhance the model by incorporating region-centric
demographic and lifestyle features to further improve
prediction personalization and accuracy.
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