Journal of Computer Science

Research Article

An Integrated Framework to Predict the Strength of New
SMILE Using Graph Attention Network

Sandhi Kranthi Reddy and S. V. G. Reddy
Department of CSE, GST, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India

Abstract: Machine Learning (ML) and Deep Learning (DL) have
significantly advanced wvarious fields, including healthcare, finance,
autonomous systems, and scientific research. In healthcare, these
technologies have been widely applied to disease prediction, such as cancer
and diabetes. However, the challenge of drug resistance persists, creating a
need for more effective drugs. Developing new drugs is a complex,
expensive, and time-intensive process, requiring innovative approaches to
enhance efficiency. To address this, GAT-PDE (Graph Attention Network-
(Deemed to be University), Based Framework for Predicting Drug Efficacy) is proposed to predict the
Visakhapatnam, Andhra Pradesh, efficacy of the new drugs/SMILES for specific diseases. The framework
India incorporates Pharmacophore fingerprints, Jaccard coefficient, quartile
analysis, and Graph Attention Networks (GATs) to improve drug efficacy
predictions. The Jaccard coefficient assesses molecular similarity between a
reference drug and a database of one million compounds using
pharmacophore fingerprints. Avapritinib, a proven drug for gastrointestinal
stromal tumours (GIST), serves as the reference compound. Quartile
analysis categorizes molecules based on Jaccard coefficient, generating
labelled data. A GAT model is trained on this data, achieving 88% accuracy
in predicting drug efficacy, demonstrating its potential for predicting
efficacy of a new drug.
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2024). Despite these advancements, developing effective
new drugs remains a significant challenge (Biala et al.,
2023). Many chronic and life-threatening diseases,
including various cancers, continue to demand novel
therapeutic solutions as resistance to existing treatments
escalates, diminishing their efficacy (Saeed et al., 2023;
Kamrani et al,, 2023). This increasing resistance
highlights the critical need for innovative drug discovery
approaches to identify and develop more effective and
sustainable drug candidates (Garg ef al., 2024).

Introduction

Artificial Intelligence (Al), particularly Machine
Learning (ML) and Deep Learning (DL) are
transforming various domains, including healthcare,
finance, autonomous  systems, and  scientific
advancements. These Al-driven technologies enable
computers to learn from vast amounts of data, recognize
patterns, and make intelligent decisions with minimal
human intervention (Mian et al., 2024). ML works well
on Euclidean data like Tabular format, Image data etc.,

while DL, a subset of ML, works on both Euclidean data
and non-Euclidean data like Molecular Graphs,
Networks etc. Their applications encompass customized
recommendations, fraud detection, medical diagnostics,
and self-driving cars (Sarker 202la-b). Al is
continuously evolving, reshaping problem-solving
strategies, boosting efficiency, and fostering innovation
across diverse domains.

ML and DL have revolutionized healthcare by
enhancing disease prediction, early diagnosis, and
treatment planning, ultimately improving patient
outcomes (Gandhi & Gandhi, 2022; Rahman et al.,
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Developing new drugs is an extremely intricate,
expensive, and time-intensive process that requires
multiple critical stages to identify effective treatments for
specific diseases (Hughes et al., 2011). Traditional
methods for identifying potential drug candidates from
vast chemical libraries are not only resource-intensive
but also highly inefficient, often leading to high attrition
rates (Parasrampuria et al, 2018). Consequently,
innovative computational strategies are essential to
accelerate and enhance the drug discovery process.

Advancements in ML and DL are transforming drug
discovery, particularly in the early stages of identifying
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promising drug candidates. These technologies enable
the rapid analysis of massive biological datasets,
improve drug efficacy predictions, and optimize lead
compounds for further development (Kumar & Roy,
2025). By optimizing these processes, ML and DL
significantly expedite drug discovery, reduce costs, and
enhance the success rate of developing effective
treatments (Lv et al., 2023; Visan et al., 2024).

A crucial aspect of modern drug discovery is
leveraging reference drugs with known efficacy to
identify new candidates (Boniolo ef al., 2021). However,
traditional computational methods often struggle to
capture the intricate structural and functional
relationships between molecules, limiting their predictive
accuracy (Krzywanski er al., 2024). To overcome this
challenge, Graph Neural Networks (GNNs) have
emerged as a powerful solution by utilizing graph-based
representations, where atoms serve as nodes and
chemical bonds as edges, to uncover deep structural and
functional patterns essential for accurate drug/SMILE
efficacy prediction (Khemani et al., 2024). By leveraging
reference drugs as a foundation, GNN-based models
provide a scalable, data-driven strategy for evaluating
new drug candidates. Their ability to enhance predictive
accuracy, reduce development costs, and increase the
success rate of novel therapeutics makes them an
essential tool in addressing drug resistance and tackling
complex diseases.

GNNs can be used for three main types of prediction
tasks (Zhang et al., 2021): graph-level, node-level, and
edge-level.

e A node-level task is used to predict the property of
node or classify the node.

e An edge-level task is used to predict the existence
of an edge between two nodes.

e A graph-level task, is used to predict the property of
whole graph or classify the whole graph.

To fully capture molecular functionalities, a graph-
level task is the most suitable choice and among various
GNN architectures, Graph Attention Networks (GATSs)
have gained significant attention for graph-level tasks
(Vrahatis et al., 2024). They enhance traditional GNN
models by incorporating an attention mechanism, which
allows the network to assign different importance
weights to neighbouring nodes. This feature is
particularly beneficial in drug discovery, where the
complete molecular graph is utilized to capture structural
and functional relationships, leading to more accurate
predictions of drug efficacy.

In this research paper, we propose and explore the
application of Graph Attention Network-Based
Framework for Predicting Drug Efficacy (GAT-FDE) to
assess the efficacy of the new drug for targeting PDGFR
using Avapritinib as a reference compound which has
demonstrated significant efficacy in patients with
PDGFRA mutant gastrointestinal stromal tumors

(GISTs). This approach corresponds to ligand-based
virtual screening (LBVS), a widely used technique in the
lead identification phase of drug discovery, where new
compounds are selected based on their similarity to
known active ligands.

Literature Review

Chang et al. (2018) developed CDRscan, a
convolutional neural network (CNN)-based deep
learning model to predict anticancer drug responses
using genomic profiles of 787 cancer cell lines and
structural data from 244 drugs. The model achieved high
prediction accuracy and identified novel drug
repurposing opportunities.

Zhu et al. (2021) developed DLEPS, a deep learning
system based on deep neural networks that predicts drug
effectiveness by using changes in gene expression from
diseased tissues. After training on over one million gene
profiles linked to thousands of molecules, the system
predicted gene changes in new, unseen data, with a
strong correlation score of 0.74.

Gaudelet et al. (2021) discuss how graph-based
machine learning is being used in drug discovery to
better understand biological molecules and integrate
various types of biological data. They highlight its
usefulness in identifying drug targets, designing new
drugs, and finding new uses for existing medicines.

Li et al. (2022) developed a new graph neural
network that analyzes how atoms interact in molecules at
multiple levels. This approach simplifies the process and
performs well in predicting how well drugs bind to
proteins for COVID-19 drug design, highlighting the role
of GNNss in protein-ligand interaction prediction.

Xie et al. (2022) developed EPL-GNN, a deep
learning model based on graph neural networks to
predict lung cancer patients’ response to immune
checkpoint inhibitors using H&E biopsy images. Tested
on 583 patients, the model outperformed existing
biomarkers, highlighting the role of GNNs in predicting
lung cancer patient responses to these inhibitors and
guiding treatment options.

Budak et al. (2023) used a graph neural network to
identify FDA-approved drugs that could be repurposed
for COVID-19 treatment. By analyzing drug structures
and binding strengths, they found several kinase
inhibitors and antiviral drugs, originally used for lung
cancer and other diseases, as promising candidates for
faster COVID-19 therapies, highlighting the role of
GNN s in predicting drug repurposing.

Saihood et al. (2024) developed MS-GNN-ALCFF, a
graph neural network model using a multi-side graph
construction layer and attention-based fusion to classify
lung nodules using 3D CT images. Tested on large
datasets, it showed strong and consistent accuracy,
highlighting the role of GNNs in lung cancer detection.
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Vaida et al. (2025) developed M-GNN, a graph
neural network model by integrating metabolomics and
demographic data to improve early detection of lung
cancer. Using 800 samples, their model achieved high
accuracy, highlighting the role of GNNs in lung cancer
prediction.

Ali et al. (2025) evaluated six deep learning models,
including Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), 3-stacked GRU, 3-stacked GRU
with Attention (GRU-ATTN), Transformer networks, and
Autoencoder architectures to predict how drugs change
gene expression in cells. Among which, the 3-stacked
GRU with Attention has outperformed other models with
79% accuracy. This highlights the effectiveness of
attention mechanisms in capturing critical patterns.

The reviewed literature highlights the increasing
importance of machine learning, particularly graph
neural networks (GNNs), in advancing drug discovery
and improving disease prediction by effectively
capturing complex molecular interactions and biological
data. This has led to improvements in drug efficacy
prediction using gene expression profiles, drug target
identification, protein-ligand interaction prediction, drug
repurposing, and patient-specific treatment response.
These findings indicate that GNN-based models,
including our proposed model (GAT-PDE), hold a strong
potential for accurately predicting the efficacy of new
drugs, thereby supporting faster and more cost-effective
drug development with promising clinical applications.

Methods

Molecular Fingerprints

Molecular fingerprints are essential computational
representations of chemical structures that are widely
used in cheminformatics for similarity searching,
clustering, and predictive modelling in drug discovery.
They encode the chemical properties of molecules as bit
vectors or numerical arrays, where each bit represents the
presence ("1") or absence ("0") of a particular structural
element. By generating and utilizing these numerical
representations, we can perform efficient computational
and analytical modeling, enabling rapid and accurate
comparisons between compounds.

Many types of fingerprints exist to digitally represent
chemical structures for diverse cheminformatics
applications. For example, MACCS fingerprints
efficiently encode specific chemical properties, making
them highly useful in virtual screening and QSAR
studies to quickly identify and optimize potential drug
leads. Topological fingerprints offer a detailed view of
molecular structure by mapping the interrelationships
among atoms, while Morgan fingerprints (or circular
fingerprints) capture the local chemical environment
around each atom by considering neighboring atoms
within a set radius. Avalon fingerprints generate unique
signatures by recording the presence or absence of
particular  substructural elements, and atom-pair

fingerprints document pairwise atomic interactions,
facilitating efficient similarity searches based on spatial
configurations. Additionally, path-based fingerprints
(like those produced by RDKit and Daylight) and
torsion-based methods provide valuable insights into
sequential and conformational features. Pharmacophore
fingerprints encode key functional features that directly
relate a compound's structure to its biological activity
(Muegge & Mukherjee, 2016). Among all these
techniques, pharmacophore fingerprints have been used
in our work.

Pharmacophore Fingerprints represent molecule with
high bit length of 39,972 focusing on key features that
directly influence a compound's biological activity (Yang
et al., 2022). By emphasizing these critical functional
attributes, pharmacophore fingerprints enable more
effective virtual screening and lead optimization,
significantly enhancing the ability to identify bioactive
molecules with diverse scaffolds for drug discovery.

Similarity Metrics

In drug discovery, similarity metrics are essential to
evaluate how similar different compounds are, which
helps in identifying promising leads.

Common similarity metrics widely used in drug
discovery are Cosine Similarity, Dice Coefficient and
Jaccard/Tanimoto Similarity. Cosine similarity measures
the cosine of the angle between two molecular
fingerprint vectors, emphasizing the pattern of features
rather than their magnitude. Dice coefficient evaluates
similarity by calculating twice the number of shared
features divided by the sum of features in both
fingerprints, highlighting the degree of overlap. Jaccard
similarity determines similarity by dividing the number
of shared features by the total number of unique features
across both fingerprints, providing a ratio of intersection
over union (Willett, 2009). Among all these metrics,
Jaccard similarity is used in our work.

Jaccard Similarity measures similarity by dividing
the number of shared features by the total number of
unique features (i.e., the union) present in the compared
fingerprints, providing a clear and interpretable ratio of
structural overlap. Its straightforward calculation and
sensitivity to key functional characteristics make it
particularly effective for our virtual screening and lead
identification efforts (Bajusz et al., 2015).

Formula to find Jaccard similarity between binary
molecular fingerprints is

ANB
T (4,B) = 455t (1)
Where:

A and B are two molecular fingerprints
Quartile Analysis

Quartile analysis is a statistical technique that divides
a dataset into four equal segments, providing insights
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into how key molecular properties are distributed
(Goswami & Chakrabarti, 2012; Akshara & Jain, 2024).
In our work, it is used to transform continuous scores
into discrete labels: 0 for the first quartile, 1 for the
second, 2 for the third, and 3 for the fourth, assigning
each compound to its corresponding quartile. This
process is essential for supervised learning in drug
discovery, as it allows Graph Neural Networks to
differentiate between varying similarity levels and
generate more precise predictions.

Graph Attention Networks

Graph  Attention Networks (GATs) enhance
traditional GNNs which operate based on message
passing and aggregation. by introducing an attention
mechanism, which assigns varying importance (weights)
to neighboring nodes when updating a node’s
representation. This allows the model to focus more on
critical molecular interactions, improving prediction
accuracy (Lavecchia, 2024).

At each hidden layer of GAT, the following steps are
performed.

Linear Transformation

Each node's feature vector undergoes a learnable
linear transformation using a weight matrix W. This
transformation allows the model to project the input
features into a new feature space, making them more
suitable for learning complex relationships.

For a given node i with an initial feature vector #;, the
transformation is defined as:

h; = wh; ()
Where:
h; represents the input feature vector of node i.

w is the learnable weight matrix applied to all nodes in
the graph.

h'i is the transformed feature vector of node i.

Compute Attention Scores

In GATs, the attention mechanism determines the
importance of neighboring nodes when updating a node’s
representation. This is done by computing an attention
score between a node i and its neighbor ;.

The attention score between nodes i and j is
computed as:

iy = LeakyReLU (aT |1il|h;] ) 3)
Where:

a is a learnable attention vector (initialized randomly)
and a is its transpose.

|| is concatenation, 4 ; and /; are transformed feature
vector of nodes i and ;.

LeakyReLU is an activation function that assigns
small non-zero values to negative inputs, ensuring the
model continues learning effectively.

Softmax Normalization

Attention scores are normalized using the softmax
function. It ensures that all attention coefficients sum to
1, allowing the model to focus on more relevant
neighbors.

The normalized attention score between nodes i and j
is computed as:

= exp(eq) 4)
Qij E ken () eXP(€ik

Where:
N(i) is a Set of neighbors of node i (including itself).

Weighted Aggregation

Neighbouring node features are aggregated using the
assigned attention weights. Weighted aggregation for
node i is computed as:

Final Aggregation and Transformation

It is computed as:
h, = w'h, (6)

(3 7

Where:

w is a learnable weight matrix for the final
transformation (same for all nodes).

Finally, the updated node representations are passed
to the next layer.

This approach enables GATs to efficiently capture
complex molecular interactions, making them well-
suited for drug efficacy prediction.

GAT-Based Framework for Predicting Drug
Efficacy (GAT-PDE)

The Schematic representation of the Graph Attention
Network-Based Framework for Predicting Drug Efficacy
(GAT-FDE) is depicted in Figure 1.

Pharmacophore Jaccard/Tanimoto 'é"“l’.’;e]'_,?:
Fingerprints Similarity Coefficient Similarity metric
molecule/Drug
Training and Testing Generating Graphs
Optimized GAT a Graph Attention for each molecule in
Model
Network a dataset

10laks
molecules/Drugs

Labelled Dataset ]
Fig. 1: Schematic representation of the Graph Attention

Network-Based Framework for Predicting Drug
Efficacy (GAT-FDE)

The proposed method includes the following steps.
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CIC@@H] (clece(ech) NCC=C)OIC=0)0-] ﬁ# \ ‘BLI 1 l 2[3[4]s l 6 I 7 l B ‘ 9 l 10 I u‘ l,
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K 01 Million SMILES J AUB=(1,4,6.7,10) U (1,3.4,6,9,10,11) The dataset converted into
. gm ‘simpl]icitly, wi::mside::)hit length of 11 4( L{]: gjs,-zg.'.g,w,ll) labelled dataset based on
L irst molecular structure (A): nAAUB)= — . RN
‘: L‘( uartiles of Jaccard Similarity
{\/ On-bits at positions 1, 4, 6, 7, 10. a metric values N
(" Reference SMILE Avapritinib N Total: 05 Intersection Operation: .
» - . BL it [a]s 45678 ]o[n0[n ANB=(14,6,7,10) U(1,3,4,6,9,10,11)
CNIC-C(C-N1)CI-CNIN-CN-CONICCNCCHEI-NC=C( Molecular Structure = } ; “J‘ - ‘[ . “ = ‘[ T { > } - } . I ; } ANB—(14,6.10)— 04 e o
C=N3)[CE@|(CHN)CI=CC=CEIC=CI)C2=C1 n(AN B)*’ o. 4' a abel
— ANB)x= Hish
_ J C % For simplicity, we consider a bit length of 11. Tow
sVeon fre
g -

Refence molecular structure (B):
On-bits at positions: 1,3,4,6,9,10,11
Total: 07

Jaccard Similarity = 4/8=0.2
209% similarity exist between A and B

Fig. 2: Process of Converting SMILES to Pharmacophore Fingerprints and Computing Jaccard Similarity

Avapritinib has been identified as a reference drug, as
it is a highly selective and potent tyrosine kinase
inhibitor (TKI) that has demonstrated significant efficacy
in patients with PDGFRA mutant GISTs, leading to
improved progression-free survival (PFS) and objective
response rates that effectively targets PDGFR mutations
(Dhillon, 2020; Li et al., 2023; Teuber et al., 2024).

Molecular Fingerprints Generation

The Pharmacophore molecular fingerprints of length
39972 are generated for all the molecules (One Million)
including the reference drug Avapritinib.

Similarity Metrics Calculation

Jaccard/Tanimoto Coefficient is calculated for all one
million molecules with respect to the Avapritinib.

Converting Dataset into Labelled Dataset

The dataset is converted into labelled dataset based
on quartiles of Jaccard Similarity metrics.

Generating Graphs

Graphs are generated for each molecule in the
dataset.

GAT Model

Graph Attention Network algorithm is trained and
evaluated the performance of the Model.

Results and Discussion

As per the process of GAT-Based framework for
predicting drug efficacy, the SMILES representation of
Avapritinib and one million molecules from a drug
database are first converted into molecular structures
using the RDKit Python library as depicted in Figure 2.
Each molecular structure is then converted into a
pharmacophore fingerprint of length 39,972 bits. The
same process is applied to the reference SMILES,
Avapritinib. For better understanding, the figure presents
an example where molecular structures A and B are
represented with a fingerprint length of 11 bits. Union
and intersection operations are performed on fingerprints

A and B, resulting in 08 elements in the union set and 04
in the intersection set. Finally, the Jaccard similarity is
computed as 0.2.

The dataset consists of two columns: SMILES and
the Jaccard similarity metric as depicted in Figure 3.

SMILES Tanimoto_values

CCCIS@](=0)c1cec2e(c)nHIc(=N/C(=0)OC)/[nH]2 0.054
CCC(=0)0[C@]1(CCINH+|(C[C@@H]1CC=C)C)c2cccec2 0.013
clC@@H](c1ccc(ce1)NCC(=C)C)C(=0)[0-] 0.014
CIC@H](Cc1occce! )INH2+][C@@H](C#N)c2cccec2 0.004
C[C@@H](CC(c1 ceceet )(c2eeece2)C(=0)N)[NH+](C)C 0.002
Cele(e(=0)n(n1C)c2eeccc2)NC(=0)[C@H](C)INH+](C)C 0.029
clcco(cc1)[C@@H](C(=0)[0-)0 0.006

Fig. 3: Dataset of One Million SMILES with Jaccard Similarity

Figure 4 illustrates the summary statistics of Jaccard
Similarity, showing its distribution across key metrics,
including mean, variability, and percentile values, which
highlights a generally low similarity range with a
maximum value of approximately 0.40.

Summary Statistics for Tanimoto Coefficient

0.40 4 —® Tanimoto Statistics
@ Data Points

Tanimoto Coefficient
o
o
S

Statistic

Fig. 4: Summary Statistics of Jaccard Similarity

Quartile analysis is used to divide the dataset into
four equal groups based on Jaccard similarity values.
These groups are labeled as low (0), medium (1), high
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(2), and very high (3). This method ensures a balanced
classification, making it easier to analyze patterns in
molecular similarity. Each SMILES entry has a similarity
value, which determines its category. If the value falls in
the lowest range, it is classified as low (0), while higher
values are placed into medium (1), high (2), or very high
(3) categories. This process is applied to all SMILES,
ensuring that each one is grouped according to its
similarity score. Figure 5 depicts the dataset consisting
of three columns SMILES, Jaccard Similarity and Label.

SMILES Tanimoto_values label

CCC[s@](=0)clccc2c(cl)[nH]/c(=N/C(=0)0C)/[nH]2 @.05 1
€CC(=0)0[C@]1(CC[NH+](C[C@@H]1CC=C)C)c2ccccc2 e.01 [’
C[C@AH] (clcce(ccl)NCC(=C)C)C(=0)[0-] e.01 °
C[C@H](Cclcceecl) [NH2+][C@@H] (C#N)c2cccec2 e.e0 [}
C[C@@H](CC(clecececeel)(c2cccce2)C(=0)N)[NH+](C)C e.e0 [}
Cclc(c(=0)n(nlC)c2ccccc2)NC(=0)[C@H] (C) [NH+](C)C @.03 ]
clecc(ccl)[C@@H] (C(=0)[0-1)0 @.01 ]

CC[C@](C) (CL[NH+](C)C)OC(=0)clccccel 0.00 0
COclce(c(c2c10C02)0C)CC=C 0.01 0

CclcccccdNC(=0) [C@H] (C) [NH+]2¢ccc2 0.01 0
CC(=0)0clccccclC(=0)[0-] @.01 ]
C[NH+]1[C@@H]2CC[C@H]1CC(C2)0C(=0)[C@H](CO)c3c. .. 0.02 °
clcc(cccl[C@@H] (CC(=0)[0-])C[NH3+])Cl e.e1 ]
clec(cecelC(=0) [0-])N[C@@H]2[ C@@H] ([ CaH]([C@EH]. . . 0.09 2
C[C@@H] (clccc2c(cl)nc(o2)c3cec(cc3)Cl)C(=0)[0-] .06 1

Fig. 5: Dataset of One Million SMILES with Jaccard Similarity
after labeling

The bar chart in Figure 6 represents the number of
SMILES in each category, showing how they are
distributed across the four similarity levels: low(0),
medium(1), high(2), and very high(3).

Bar Chart of Quartile-based Labels

250000 -

200000 -

150000 -

Frequency

100000 -

50000 -

Quartile Labels

Fig. 6: Distribution of SMILES using Quartile Analysis based
on Jaccard Similarity

Once the dataset is converted into categorical form,
each SMILES string is transformed into a graph using
the from smiles() function from the Torch Geometric
library.

Data(x=[13, 9], edge_index=2. 26], sdge_attr=[26, 3])

Datax=[13, 9], edge_index~[2, 26], edge_ar=[26,3])

Data(x-[11, 9], edge_index~[2, 22], edge_attr—[22, 3])

Fig. 7: Process of Converting a SMILES into Graphs

Figure 7 illustrates the process of converting a
SMILES representation into a graph and then into a
Torch Geometric object. This process is repeated for all
one million SMILES, generating corresponding graph-
based Torch Geometric objects.

The dataset is divided into training and testing sets,
with 70% used for training and 30% for testing. The
Graph Attentive Network (GAT) is trained on the
training dataset using the AttentiveFP model from the
Torch Geometric library. Figure 8 illustrates the process
of training the GAT algorithm and validating the GAT
model. After training, the model is tested on the test
dataset and evaluated using performance metrics.

Graph Neural Network-Based Framework for Predicting Drug Effectiveness

Graph Atfention Network (GAT) Model to Predict Drug Efficacy

Fig. 8: Training and Validation Process of GAT Model

The GAT model was trained and tested for ten
epochs. Throughout the training process, both training
and testing accuracy gradually increased, while training
and testing loss progressively decreased. Training
accuracy improved from 80.45% to 87.28%, and test
accuracy increased from 86.30% to 88.30%, as depicted
in Figure 9. Similarly, training loss decreased from
0.4508 to 0.2995, while test loss reduced from 0.3236 to
0.2750, as depicted in Figure 10. These results
demonstrate that the model effectively learned and
improved its performance over time. Table 1 summarizes
these trends over ten epochs.

Accuracy Over Epochs

—8— Train Accuracy
0.88 - —#— Test Accuracy

Accuracy
s o e o o
oo o0 o0 =] o0
w -~ w o ~

ol
o0
¥

e
=)
et

2 4 6 8 10
Epochs

Fig. 9: Training and Testing Accuracy over 10 Epochs of GAT
Model

Table 1: Accuracy and Loss of Training and Testing

Accuracy Range Loss Range

Training Accuracy 80.45% to 87.28% Training Loss 0.45 to 0.29
Testing Accuracy  86.30% to 88.30% Testing Loss 0.32 to 0.27
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Fig. 10: Training and Testing Loss over 10 Epochs of GAT
Model

The confusion matrix for the test dataset (314,572
samples) is depicted in Figure 11. It displays the number
of correct and incorrect predictions for each class,
helping to assess the model's performance and identify
misclassifications. Key metrics such as accuracy,
precision, recall, and Fl-score can be calculated from it
for a more detailed evaluation as depicted in Figure 12.
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Fig. 11: Confusion Matrix of GAT Model for Test Dataset
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Fig. 12: Performance Metrics of GAT Model for Test Dataset

The proposed GAT-PDE model achieved an accuracy
of 88.3%, and other performance metrics support its
robustness in predicting drug efficacy.

Conclusion

Machine Learning (ML) and Deep Learning (DL)
have significantly advanced various fields, including
healthcare. However, the challenge of drug resistance
persists which continues to demand novel drugs.
Addressing the proposed GAT-PDE framework
demonstrates a promising approach for predicting drug
efficacy by leveraging Graph Attention Networks
(GATs), pharmacophore fingerprints, Jaccard similarity,
and quartile-based labelling. By utilizing Avapritinib as a
reference drug, the model effectively categorizes
molecular similarities and achieves high accuracy in drug
efficacy prediction. The extension of this framework to
NSCLC drug discovery, integrating molecular
fingerprints and deep learning, further highlights its
adaptability and potential impact. With an accuracy of
88% at 10 epochs, the framework shows promise for
identifying effective drugs targeting PDGFR in NSCLC,
and further training could enhance its predictive
performance. This approach has the potential to
accelerate drug discovery, reduce costs, and improve
treatment outcomes for resistant diseases.

Future Scope

The current framework uses a single reference
compound, Avapritinib, to evaluate molecular similarity
and predict efficacy for the PDGFR target. Expanding
this approach to include multiple targets and multiple
reference drugs could offer a more comprehensive
strategy, particularly for complex diseases like NSCLC.
Integrating the framework into existing drug repurposing
platforms may also help identify new uses for approved
drugs, reducing both time and cost. Furthermore,
collaborating with clinical researchers to test the model’s
predictions in laboratory or clinical settings would
provide crucial validation and help refine the framework
for real-world application.
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