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Abstract: The utmost prevalent type of the disease, skin cancer claims
millions of lives every year, poses a serious public health threat particularly
melanoma, which is often fatal if not detected early. Early diagnosis is
crucial, yet traditional methods frequently fall short due to image quality
limitations and the complexity of visual differentiation. With an emphasis on
severity analysis, this study presents a sophisticated deep learning methods
for skin cancer segmentation and classification. In order to improve quality
and enable more accurate analysis, sophisticated picture pre-processing
techniques are used to reduce noise while maintaining important
characteristics. The refined images are then analyzed using a two-phase
Self-Attention-based Hierarchical Capsule Network, which effectively
extracts intricate patterns. Feature selection is optimized using the Tent
Chaotic-based Walrus Optimization Algorithm (TCWOA), minimizing
computational complexity. For segmentation, the Progressive Attention-
based Multi-scale Hierarchical Residual Swin Transformer (PA-HRST)
model is utilized. Classification is performed using the Global Attention-
based Multilevel Semantic Knowledge Alignment Distillation Network
(GA-MSKAD), accurately identifying seven skin cancer types. Finally,
severity is predicted using the Residual Lasso Logistic Regression (RLLR)
model. Using the HAM 10000 dataset, which consists of 10,015 dermoscopy
images from seven classes, the method shows its efficacy in detecting and
forecasting skin conditions with a high testing accuracy of 99.18%. This
comprehensive approach from image enhancement to severity assessment
offers a significant improvement over conventional diagnostic tools. For
future work, incorporating model interpretability, diverse datasets, and
clinical metadata will be essential to further optimize results and support
real-world medical applications.
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Introduction

The skin is the largest and most vital organ in the
body, protecting the inside organs. It has multiple layers,
such as the dermis, epidermis, muscles, blood vessels,
lymphatic vessels, nerves, and subcutaneous tissues
(Aldhyani et al., 2022). Melanocytes, basal cells, and
squamous cells make up the outermost layer, the
epidermis. The surface layer is made up of squamous
cells, basal cells are located at the base of the epidermis,
and melanocytes produce melanin, a protective brown
pigment that shields the deeper layers of skin from
sunlight damage (Mishra et al., 2021). This combination
of factors can lead to the development of malignant
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neoplastic cells, resulting in skin cancer. The primary
cause of skin cancer is prolonged exposure to ultraviolet
(UV) radiation from the sun, which stimulates the
production of melanin in the epidermis. Those who fail
to protect their skin from UV rays risk damaging the
DNA of skin cells. This damage can disrupt the normal
mechanisms regulating cell growth and may ultimately
lead to cancer. Among the various types of skin cancer,
malignant melanoma is the most dangerous, associated
with a high mortality rate among affected individuals
(Islam et al., 2021). Melanoma is the most frequent
cancer in both men and women, with an estimated
300,000 new cases recorded worldwide in 2018. About
1.2 million cases of non-melanoma skin cancer and
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324,635 cases of melanoma skin cancer collectively

make up 33% of all cancer diagnoses (Tiwari et al.,
2023).

The World Health Organization (WHO) reports that
more than one-third of all cancer diagnoses worldwide
are skin cancers. It is a serious condition associated with
high death rates, but early detection can significantly
lower mortality rates (Akter et al., 2022). Traditional
biopsy methods can be painful and costly (Tahir et al.,
2023). Moreover, accurately identifying skin lesions
through photographs can be challenging (Purni &
Vedhapriyavadhana, 2024). Cancer can be categorized
into six main classes (Igbal et al., 2021; Bala et al.,
2022).

1. Carcinoma, which starts in the skin, breasts, lungs,
pancreas, and other organs

2. Sarcoma, which develops in connective tissues like
bone and muscle

3. Leukemia, which begins in the bone marrow and
produces abnormal blood cells

4. Lymphoma, which arises in immune system cells

5. Cancer of the brain and spinal cord which impacts
the central nervous system

6. Melanoma, a skin cancer that starts in cells that
produce pigment and can spread to other organs.

With advancements in technology, computer vision
has become an increasingly practical tool (Allugunti,
2022). Recent developments in neural networks have
shown great promise in classifying medical images,
although a limited investigation of deep learning models
often hampers their full potential (Das et al, 2021).
Studies indicate that deep learning models are
particularly effective in the binary classification of skin
lesions (Aljohani ef al., 2022).

To create an application for diagnosing skin cancer,
key steps include thorough image segmentation and deep
learning-based tracking, starting with processing images
to a resolution of 120x120 pixels (Dorj et al., 2018).
Various deep learning approaches for image
classification continue to improve (Garg et al., 2021).
However, convolutional neural networks (CNNs) face
challenges, such as sensitivity to slight image alterations
and vulnerability to adversarial attacks. Skin lesions can
be classified as malignant (cancerous) or benign (non-
cancerous). Malignant skin lesions can be lethal if left
untreated, but benign skin lesions are usually harmless
but can occasionally be unsettling (Alshahrani et al.,
2024). This specialized CNN technique aims to
accurately classify different categories of dermoscopic
images, though there is still a need for more effective
models in skin cancer classification. Detecting cancer in
different body regions is an ongoing challenge. Timely
and accurate diagnoses can significantly reduce overall
cancer-related mortality rates, underscoring the need for
reliable models in skin cancer classification despite
technological advancements. Effective detection methods
are crucial not only for improving patient outcomes but

also for lowering mortality rates. Among the several
methods, efficient models for classifying skin cancer are
still needed.

Several significant challenges arise in cutaneous
lesion analysis due to inherent limitations in current
methodologies. Insufficient contrast in lesion imagery
often compromises boundary detection, with existing
technologies frequently failing to produce precise
segmentation between different tissue regions. This
limitation is further exacerbated when preprocessing
techniques are neglected, ultimately contributing to
inaccurate diagnostic outcomes (Naqvi ef al., 2023).

The inherent variability in lesion morphology and
texture presents another substantial obstacle, frequently
leading to erroneous region segmentation (Hartanto &
Wibowo, 2020). Additionally, current feature extraction
methods often fail to adequately integrate -critical
relationships between erroneous regions, healthy tissue
characteristics, and other clinically relevant features
necessary for accurate classification (Adla et al., 2022).

Practical implementation barriers include the time-
intensive nature of many classification approaches,
which often require extensive datasets that are both
financially burdensome and particularly challenging to
acquire for rare dermatological conditions (Behara ef al.,
2022). Furthermore, the interpretability of results
remains problematic, as understanding the rationale
behind algorithmic decisions becomes increasingly
complex when dealing with high-dimensional feature
spaces, making clinical validation difficult.

Problem Formulation

A DNA abnormality causes skin cells to proliferate
uncontrollably and generate a lot of cancer cells. This is
how skin cancer starts. Early diagnosis increases the
likelihood that a patient will seek treatment and recover
completely. However, collecting various kinds of data,
such as position and skin lines, presents several
difficulties. Many studies have been conducted to
provide an accurate diagnosis approach because it is non-
invasive. Although disease domain knowledge is
essential, segmentation is a frequently utilized strategy.
Recently, researchers more interested in artificial
intelligence (Al)-based deep learning techniques and
machine learning (ML), especially in the medical field.
Past studies in the field indicates the current efforts are
effective, there is still a problem with the precision of
skin cancer prediction. ML-based methods struggle to
perform effectively on larger datasets. Severe time
complexity can also result from delayed training and
severe over fitting issues. As a result, a complex
technique is needed to recognize skin problems in
pictures. Validating skin disease prediction is also
necessary for researching the efficacy of skin cancer
classification and prediction. Early diagnosis increases a
patient's chances of recovery and allows them to seek
medical care.
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Study Motivation and Objectives

Current methodologies for skin disorder analysis face
significant limitations in identifying critical diagnostic
elements such as skin lines and lesion positioning. While
numerous studies have pursued non-invasive diagnostic
approaches, conventional techniques often yield reduced
classification accuracy and require substantial
computational resources. These challenges necessitate
the development of sophisticated systems capable of
early and accurate skin cancer detection.

This study introduces a novel optimal visual
transformer architecture designed to enhance physician
decision support by addressing key limitations in
existing approaches. While deep learning methods have
shown promise in disease classification, previous
implementations have struggled with artifacts including
hair, moles, and air bubbles that complicate data
interpretation. To overcome these obstacles, we propose
a hybrid deep learning system that provides enhanced
diagnostic  assistance through improved feature
representation and learning efficacy.

The primary contributions of this research include
several innovative technical approaches. An Enhanced
Low Pass Wiener Filter (ELPWF) performs
preprocessing to enhance luminance in affected regions,
while a Swin Transformer enables precise segmentation
of diseased areas. For feature extraction, Two-phase Self-
attention based Hierarchical Capsule Networks (TS-
HCaps) capture spatial and hierarchical properties from
ABCDE dermatological data.

The framework further incorporates the Tent Chaotic
Walrus Optimization Algorithm (TCWOA) for optimal
feature selection to maximize classification accuracy.
Finally, a Global Attention-based Multilevel Semantic
Knowledge Alignment Distillation Network (GA-
MSKAD) classifies skin cancer types using the
HAMI10000 dataset, with multiple hybrid models
engineered to enhance feature representation and
learning performance.

Literature Review

This section provides a comprehensive examination
and critical analysis of the diverse methodologies
employed in dermatological condition detection and
classification. The review systematically evaluates both
traditional and contemporary approaches, highlighting
their respective strengths, limitations, and applicability
within clinical contexts.

Behara et al. (2024) integrated active contour
segmentation with ResNet50 and Capsule Networks to
enhance feature discrimination capabilities in skin lesion
analysis. Adla et al. (2023) developed a novel computer-
aided diagnosis system utilizing a hyper-parameterized
FrCN model for epidermal lesion detection in
dermoscopy images. In agricultural applications, Patil
and Patil (2025) proposed a hybrid deep learning

framework incorporating meta-heuristic optimization for
early crop disease prediction and management.
Meanwhile, Tembhurne et al. (2023) introduced an
ensemble methodology combining deep learning with
traditional machine learning techniques to improve skin
cancer detection accuracy, thereby facilitating early
diagnosis and enhanced healthcare outcomes.

Salih and Duffy (2023) developed an algorithm that
automatically fine-tunes hyperparameters within a CNN
framework to improve epidermal abrasion identification.
Patil & Tandon (2025a) developed a successful deep
learning model for skin cancer segmentation,
classification, and severity analysis using HAM10000 in
order to increase diagnosis accuracy through multi-phase
processing. By maintaining spatial hierarchies and
outperforming conventional CNN models Patil & Tandon
(2025b) presented a deep learning technique based on
capsule networks for precise cutaneous carcinoma
segmentation and classification.

Khan & Inam Ullah (2023) used conventional
techniques, wherein medical practitioners used swabs of
fluid from skin rashes to diagnose the illness.
Nevertheless, this approach has a number of drawbacks,
such as its dependence on medical knowledge, exorbitant
expenses, sluggish processing times, and frequently
disappointing outcomes. An Al-based diagnostic system
that can quickly identify the monkey pox virus was
provided in this research. In order to detect and diagnose
skin problems Singh et al. (2024) set out to create a
system that combined multiple Al-based classifiers with
metaheuristic optimizers. An image processing method
for dermatological screening was introduced by Sany &
Shill (2024). This method entails taking digital pictures
of the afflicted skin areas and using image processing
techniques to identify the disease.

A Derm-CDSM was introduced by Mittal et al.
(2024) to identify skin disorders. This model combined a
hybrid deep learning technique with an emphasis on
improving segmentation capabilities. In order to achieve
more precise illness detection, they also refined the
segmentation process by applying an ICSO-optimized
chameleon swarm optimization method. Using machine
learning classification Inthiyaz et al. (2023) presented a
computerized approach for identifying and classifying
skin conditions. Convolutional methods are used to
analyze, interpret, and classify image data that has a
variety of attributes. In order to categorize particular skin
problems Vayadande et al. (2024) introduced a
comprehensive multiclass DL technique focused on
comparing healthy skin with diseased epidermal areas
impacted by diseases.

Hamida et al. (2024) concentrated on presenting a
novel approach that combined the advantages of both
DNN and RF methods. In order to greatly improve
model performance and generalizability, this model
included data enlargement and equilibrium procedures.
An artificial intelligence (Al)-powered smartphone
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application for the detection of different skin conditions
was conceptualized and developed by Maduranga &
Nandasena (2022). CNN was the most -effective
technique among the others for detecting these disorders.
Patients and dermatologists can use the mobile
application, which is designed for quick and accurate
action, to examine photos of afflicted areas and
determine the exact type of disease. Anand et al. (2022)
introduced a transfer learning-based approach that used a
pre-trained Xception model by including extra layers. A
new FC layer was created in place of the previous one,
which was customized for seven different types of skin
diseases.

An inventive transformer method that uses
multimodal techniques to fuse images and information
for the categorization of skin diseases was presented by
Cai et al (2023). This model extracts deep
characteristics from images using an appropriate vision
transformer (ViT). Yanagisawa et al. (2023) presented a
CNN model for the segmentation of skin images,
resulting in a dataset that is accurate for CAD. With a
criterion specified for an image that has more than 80%
skin area and more than 10% lesion area, CNN, which is
based on DeepLabv3+, is the subject of this research.
Wei et al. (2023) used fusion techniques to provide a
CNN method for identifying skin disorders. Utilizing
superficial and deep fusion approaches to fuse the
features, as well as aggregating the module that
integrates other techniques, further improves the feature
extraction process.

Ayas (2023) implemented a Swin Transformer model
for multiclass skin lesion classification, establishing an
effective end-to-end framework that operates without
requiring prior domain knowledge. To mitigate class
imbalance challenges, the approach incorporated a
weighted cross-entropy loss function. Meanwhile,
Hameed et al. (2023) concentrated on binary
classification tasks, while Narayan et al. (2023)
developed a comprehensive deep learning pipeline for
assessing Lumpy Skin Disease severity in cattle,
encompassing data collection, preprocessing,
segmentation, and feature extraction stages.

Mukadam and Patil (2023) developed a framework
integrating an Enhanced Super Resolution GAN with a
custom CNN architecture to improve image clarity,
classification accuracy, and early diagnosis effectiveness.
Similarly, Afrifa et al. (2025) created specialized deep
neural network models for melanoma classification,
achieving enhanced diagnostic precision and generating
valuable insights for automated skin cancer detection
systems. Complementing these efforts, Rao et al. (2023)
introduced a hybrid methodology that combines
comprehensive research approaches with deep learning
techniques to establish robust frameworks capable of
categorizing diverse skin disorders with improved
reliability.

Tandon ef al. (2024) conducted a comprehensive
comparison study revealing that numerous researchers
have achieved remarkable accuracy using convolutional
neural network models and pre-trained architectures for
automated cancer detection, while also identifying
limitations in existing deep learning approaches. In
agricultural applications, Patil and Patil (2021)
developed a deep CNN model for cotton plant disease
identification, implementing a complete pipeline
encompassing  image  acquisition,  preprocessing,
augmentation, and fine-tuning throughout training and
validation phases. Building on this work, Patil and Patil
(2024c¢) introduced a modified level set algorithm for
segmentation and proposed weight optimization in RNNs
to enhance precision. To address this optimization
challenge, their study implements a novel Modified
Grasshopper Optimization Algorithm (GOA) for
parameter tuning.

Patil and Patil (2024b) developed a stacking
ensemble model for improved cotton disease prediction,
while their subsequent work Patil and Patil (2024a)
achieved exceptional performance with 99.6% accuracy
using a similar ensemble technique for cotton disease
identification. In parallel developments, Tandon et al.
(2022) introduced VCNet, a hybrid architecture that
integrates VGG-16's object recognition capabilities with
CapsNet's robustness to spatial variations, addressing
limitations of conventional CNNs in handling unusual
image orientations. Similarly, Rathore and Prasad (2022)
proposed a VGG-16 and capsule network fusion for
detecting subtle diseases in wheat leaves, demonstrating
the effectiveness of hybrid approaches for challenging
agricultural classification tasks.

Research Gaps

The analysis of current literature reveals several
significant limitations in existing approaches to
dermatological image analysis.

Limited Generalization Across Diverse Datasets

While Behara ef al. (2024) demonstrated promising
results with their ResNet50 and Capsule Network
integration, the model lacks validation across varied
lesion types and demographic datasets, restricting its
broader clinical applicability.

Insufficient Real-World Testing and Interpretability

Tembhurne et al. (2023) achieved improved detection
rates through ensemble methods but neglected crucial
aspects of model explainability and practical clinical
deployment, limiting translational potential.

Inadequate Handling of Class Imbalance

Ayas (2023) addressed dataset imbalance through
loss function modifications but overlooked more
comprehensive solutions such as advanced data
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augmentation or sophisticated resampling techniques that
could further enhance model robustness.

Computational Constraints in Practical Deployment

The integrated CNN and Enhanced SRGAN
framework proposed by Mukadam & Patil (2023)
demonstrates improved image clarity but raises concerns
about computational demands and feasibility for
resource-constrained clinical environments.

Limited Multimodal Data Integration

Afrifa et al. (2025) focused exclusively on image-
based classification using melanoma datasets, omitting
potentially valuable clinical metadata and patient history
that could significantly improve diagnostic accuracy and
clinical relevance.

Rationale

Deep learning methodologies have demonstrated
exceptional capability in processing complex medical
datasets and extracting clinically relevant insights from
medical imagery. These computational approaches are
particularly valuable in dermatological applications,
where visual analysis forms the cornerstone of diagnostic
procedures.

The present research addresses the critical need for
advanced analytical systems in cutaneous oncology by
developing a comprehensive deep learning framework
for precise cancer classification, segmentation, and
severity assessment. By integrating convolutional neural
networks with complementary computational techniques,
this study aims to enhance diagnostic precision and
efficiency, thereby facilitating earlier detection and
intervention.

This methodological approach seeks to overcome
existing limitations in automated dermatological analysis
while providing clinicians with reliable decision support
tools. The anticipated outcome is a robust system capable
of improving diagnostic = workflows, reducing
interpretation variability, and ultimately contributing to
enhanced patient prognosis through timely and accurate
skin cancer identification.

Material and Methods

The suggested model aims to complement the current
diagnostic techniques used for dermatological illness
evaluation, which are often applied for the detection of
problems such skin lesions. The suggested framework is
logically divided into several distinct stages.

Dataset

The Human Against Machine with 10000 training
images (HAM10000) (Tschandl et al., 2018) dataset,
which contains annotated photos of 10,015 different skin
lesions divided into seven primary categories, is used to
generate dermoscopic images: Actinic Keratoses

(AKIEC), Basal Cell Carcinoma (BCC), Benign
Keratosis-like Lesions (BKL), Dermatofibroma (DF),
Melanoma (MEL), Melanocytic Nevi (NV), and Vascular
Lesions (VASC).

The dataset aims to support the development of
machine learning and deep learning models for
automated skin cancer detection. Its diversity and size
make it a benchmark resource for evaluating
classification, segmentation, and diagnostic algorithms in
dermatology, contributing significantly to research in
computer-aided diagnosis and early detection of skin
cancer. Table 1 provides a detailed description of the
dataset's composition and the number of photos that
belong to each kind. The sample photos from our dataset
are shown in Figure 1.

Table 1: Analysis of our dataset

Classes No. of Image Samples
AKIEC 327

BKL 1099

BCC 514

VASC 142

MEL 1113

NV 6705

DF 115

B AR ” ) ' > &
Q*RA > i § d
Fig. 1: Sample images of our dataset

The dataset was systematically partitioned to ensure
robust model evaluation, following established machine
learning protocols. The training subset comprised 80% of
the total data (8,012 instances), the remaining 20%
(2,003 instances) was reserved as an independent test set
to provide unbiased performance assessment and validate
the model's generalization capabilities on unseen data.

Pre-Processing

Effective pre-processing is essential for accurate skin
tumor classification, as it addresses critical challenges
including color normalization, hair removal, and noise
reduction in dermatological images. While various pre-
processing techniques have been developed for skin
tumor analysis, existing methods often fail to preserve
critical boundary information and contour details,
ultimately compromising classification accuracy by
obscuring diagnostically relevant tumor regions.
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To overcome these limitations, this study introduces
an Enhanced Low Pass Wiener Filter (ELPWF) that
systematically addresses image quality degradation while
preserving diagnostically critical features. Filter-based
approaches are commonly employed to enhance image
quality through high-frequency noise removal, de-
interlacing, and deblurring operations. The ELPWF
specifically optimizes noise reduction while maintaining
essential lesion characteristics including boundary
definition, color wvariation, and textural patterns, all
crucial for accurate classification.

The proposed hybrid ELPWF model implements a
dual-stage processing approach. Initially, a low-pass
filter smooths continuous conditioning variables and
mitigates the impact of outlier values. Subsequently, the
Wiener filter component minimizes the mean square
error between estimated and original true signals,
ensuring optimal balance between noise suppression and
feature preservation. This integrated approach enables
robust pre-processing that enhances subsequent
segmentation and classification performance while
maintaining diagnostic integrity of lesion characteristics.

H (u,v) = —Sreluy) (1)

= Szz(uw)+Snn(uv)
Where,
H (u,v) = filter transfer function
Sz (u,v) = power spectral density of the signal

Snn (u,v) = power spectral density of the noise
Feature Extraction

Following skin lesion image segmentation, robust
feature extraction becomes essential for enhancing
classification accuracy. This process involves isolating

and quantifying distinctive lesion characteristics,
including color patterns, textural variations, and
morphological  structures, to  enable  precise

categorization. Traditional feature extraction approaches
often encounter limitations in handling temporal
complexity and spectral correlations, which can
compromise accuracy and lead to the loss of
diagnostically critical information.

To address these limitations, we propose a Two-phase
Self-attention based Hierarchical Capsule Network (TS-
HCaps), a specialized deep learning architecture
designed for multi-class skin lesion classification. This
framework processes dermatoscopic images from the
HAMI10000 dataset, focusing on learning robust,
discriminative features with enhanced spatial awareness
through the integration of self-attention mechanisms and
capsule networks.

The  TS-HCaps framework implements a
sophisticated four-phase processing pipeline designed to
extract comprehensive polarimetric and hierarchical
features from dermatoscopic images. The complete
architectural framework of the TS-HCaps feature
extraction model is illustrated in Figure 2.

Two-Phase Attention Mechanism
(Preprocessing + Scattering Features)

Phase 1: Feature Extraction
Entropy, Anisotropy, Scatter-
ing Angle from Coherence Matrix

Phase 2: Primary Capsule Layer
Convolution + Low/Deep Feature Capsules

Phase 3: Higher-Level Capsule Layer
Dynamic Routing, SReLU, Squashing

Phase 4: CRF Module
Unary + Pairwise Potentials | Self-Attention

Fig. 2: Architectural view of Feature extraction utilizing TS-
HCaps model

Phase 1: Polarimetric Feature Extraction

Initial  processing calculates  scattering and
backscattering matrices through coherence matrix
analysis, deriving essential polarimetric properties
including Entropy, Anisotropy, and Scattering Angle. The
framework further quantifies distributed scattering
energy through subdivision and cross-division ratio
computations. Statistical smoothing techniques are
subsequently applied to enhance feature robustness and
stability.

Phase 2: Capsule Network Initialization

Convolutional layers construct a primary capsule
layer that integrates both low-level and deep-level
features into neuron capsules. This architecture facilitates
enhanced object representation while maintaining
efficient backpropagation for optimized learning.

Phase 3: Hierarchical Feature Routing

A dynamic routing mechanism transforms lower-
level capsules into higher-level representations using the
Squashing ReLU activation function. This phase
minimizes parameter requirements while effectively
capturing complex object relationships through
hierarchical feature organization.

Phase 4: Spatial Context Refinement

The final phase employs a Conditional Random Field
to refine potentially misclassified features by computing
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unary and pairwise potentials. This integrates crucial
spatial context and enhances boundary precision in
feature classification.

Throughout this pipeline, integrated self-attention
mechanisms strengthen internal feature dependencies,
enabling the extraction of rich hierarchical information
Table 2: Feature extraction using TS-HCaps Component

while simultaneously reducing dimensionality and
improving overall classification accuracy.

Table 2 provides a comprehensive overview of the
feature extraction capabilities of the TS-HCaps
component, detailing the specific features extracted and
their clinical relevance for skin cancer diagnosis.

Feature Type Extracted Features

TS-HCaps Component

Color Features
Texture Features

Edge/Shape Features  Lesion boundaries, irregular shapes, asymmetry

Spatial Relationship ~ Part-whole configurations, spatial layout of lesion sub-regions
Global Context Attention to lesion vs non-lesion regions, suppress background noise
Features

Fine-grained Attention Micro-patterns within lesions, internal region comparisons, inter-class differences

Pose & Orientation Direction, position, rotation of lesion parts

Class-specific Features Encodings sensitive to melanoma, BCC, AKIEC, etc. based on learned class

prototypes

RGB variance, lesion pigmentation, color irregularities
Fine granularity, streaks, globules, dots, surface smoothness

Initial convolutional layers
Convolution + capsule layers
Capsule networks
Hierarchical capsule routing
Phase 1 self-attention layer

Phase 2 self-attention layer
Dynamic routing in capsules
Final classification capsule
layer

Feature Selection

Feature selection plays a critical role in skin disease
detection by enhancing classification accuracy while
simultaneously reducing computational complexity. This
process identifies the most discriminative characteristics
while eliminating redundant or irrelevant data, thereby
optimizing model performance and interpretability.

This study implements the Tent Chaotic Walrus
Optimization Algorithm (TCWOA), an advanced
metaheuristic approach that efficiently identifies optimal
feature subsets for skin cancer diagnosis. The algorithm
integrates two complementary biological inspirations:
the intelligent foraging behavior of walruses and the
unpredictable patterns of chaotic systems through Tent
Chaotic Maps.

TCWOA enhances feature space exploration by
leveraging chaotic dynamics to escape local optima
while maintaining comprehensive search coverage. The
walrus-inspired ~ component  provides intelligent
exploitation of promising feature regions, creating a
balanced optimization strategy that effectively navigates
high-dimensional feature spaces. This hybrid approach
significantly reduces dimensionality and training time by
prioritizing clinically relevant skin lesion patterns while
discarding non-informative data.

The integration of TCWOA within deep learning
frameworks enhances model efficiency by focusing
computational resources on the most diagnostically
significant features, ultimately improving classification
performance and clinical applicability. The complete
pseudocode detailing the TCWOA implementation for
feature selection is shown in Algorithm 1.

The equation of generalized fitness update is given
below:

Xnew = Xpest + T'.sin ()\.7!'.’!') (2)

Where:

X,ew = new candidate solution
T = tent chaotic map value
A = control parameter

r=random number € [0, 1]

Algorithm 1: TCWOA_FeatureSelection

Input: FeatureSet F, PopulationSize N, MaxIterations T
Output: OptimalFeatureSubset

1. Initialize walrus population W; (i = 1 to N) with random
binary strings (feature subsets)

2. Evaluate fitness of each W; using classification accuracy
or another objective function

3. Identify best solution Wy, among population based on
fitness

4.Fort=1toTdo
a. For each walrus W; in population:
i. Generate chaotic parameter T using Tent map:

ifr<0.7:
T.=1r/0.7

else:
T.,=(1-r)/03

(where r is a random number in [0,1])
ii. Update position using chaotic-sine strategy:
Wi new = Whest T T X sin(mt X & X rand())

iii. Convert W; .. to binary (e.g., using
thresholding or sigmoid)

iv. Evaluate fitness of W;

i_new
v. If fitness(W; ) = fitness(W,):
Wi — W

i_new

b. Update Wy if a better solution is found in current
iteration

5. Return Wy, as OptimalFeatureSubset
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Classification

This study performs a comprehensive comparative
analysis between our proposed model and established
hybrid architectures including ResNet-RNN, ResNet-
VGG, EfficientNet-BiLSTM, CNN-Transformer, and
Swin Transformer-CNN. For the skin cancer
classification task, we implement the Global Attention-
based Multilevel Semantic Knowledge Alignment
Distillation (GA-MSKAD) network, an advanced deep
learning framework designed to optimize feature
representation and learning efficacy through integrated
attention mechanisms and knowledge distillation.

The GA-MSKAD framework enhances classification
performance through multilevel semantic knowledge
alignment combined with global attention techniques,
enabling improved representation of  semantic
relationships between network layers and fine-grained
lesion details. The architecture employs a knowledge
distillation approach that facilitates effective information
transfer between teacher and student networks, ensuring
robust generalization and accurate classification across
diverse skin cancer types in the HAM10000 dataset.

The classification process begins with feature
transformation through the Convolutional Block
Attention Module (CBAM), which simultaneously
leverages channel and spatial information to refine
feature representations. Formally, given an input feature

map E e RDXGXX

, the framework processes it through
transitional phase FE, to generate the final output

representation E3, which is written as:
Ey, = Np(E)Q E; 3)
E3 = Np (Ey) Q@ B, “)

where, Npand Nr represent channel and spatial
attention maps and ® expresses element-wise
multiplication. This global attention mechanism
enhances the quality of feature representations, which are
then passed to the MSKAD model for accurate skin

cancer classification. Figure 3 illustrates the architecture
of the GA-MSKAD model.

| Channel Spatial
¥ | Attention Attention ”
Optimal Features Enhanced Feature:

‘Teach

Layer Layer
1 2

[ K g
| Distillation

Fig. 3: Architecture for proposed GA-MSKAD model

Knowledge Distillation Framework

The distillation loss function facilitates effective
knowledge transfer from the teacher to student model,
enhancing generalization capabilities through a balanced
optimization objective. The composite loss function is
defined as:

L =o.Leg (y.§) + (1- «) T2KL (0 (%) ,0 (%)) ®)
Where:

L¢g = cross-entropy loss
K L = Kullback-Leibler divergence

zs, 2 = logits from student and teacher
T = temperature
o = balancing parameter

The teacher module employs a high-capacity
transformer model trained on extensive dermoscopic
data, processing enhanced features to capture intricate
semantic relationships between lesion components. The
self-attention mechanism generates relational encodings
E} from initial embeddings E", producing attention
outcomes defined as:

S
T, = soft max (ff’—\L[gL) U, (6)

The student module implements a Bidirectional
Gated Recurrent Unit with Soft-Attention (BiGRU-SA)
to process global semantic features encoded from initial
embeddings Ego,;. An attention mechanism selectively
emphasizes  prominent global semantics  while
suppressing insignificant features through reweighting:

Eg;obal = ﬂEglobal (7)
Segmentation

The initial pre-processing phase performs critical
lesion isolation from medical imagery, establishing the
foundation for subsequent analytical stages. During
segmentation, advanced algorithms precisely delineate
tumor lesions from surrounding healthy tissue, enabling
accurate diagnostic assessment and treatment planning
by isolating clinically relevant regions of interest.

This  methodology  partitions  images into
homogeneous segments, enhancing differentiation
between pathological lesions and adjacent tissues. The
Progressive Attention-based Multi-scale Hierarchical
Residual Swin Transformer (PA-HRST) architecture
significantly improves segmentation efficacy through
integrated hierarchical residual learning and multi-scale
attention mechanisms.

The PA-HRST framework processes enhanced input
data through parallel convolutional and transformer
pathways, integrating their feature representations.
Channel attention mechanisms refine these combined

2211


http://192.168.1.15/data/13548/fig4.jpeg
http://192.168.1.15/data/13548/fig4.jpeg

Punam R. Patil et al. / Journal of Computer Science 2025, 21 (9): 2204.2219
DOI: 10.3844/jcssp.2025.2204.2219

features, which then undergo global average pooling and
sigmoid activation. Residual connections maintain
feature integrity throughout this process, while the
Progressive Attention Module (PAM) performs final
convolution  operations to  generate optimized
segmentation outputs.

Severity Analysis

Severity analysis in skin cancer detection involves
evaluating the progression stage of skin lesions by
distinguishing between benign and malignant conditions.
This critical assessment supports clinical decision-
making by identifying lesions requiring immediate
intervention or biopsy. Following segmentation and
classification, deep learning models perform this analysis
by extracting and evaluating key visual characteristics
including asymmetry, border irregularity, color variation,
and dimensional parameters.

The severity analysis employs a Regularized Logistic
Regression model with Lasso (L1) regularization, which
combines binary classification capability with sparse
feature selection. The L1 regularization promotes model
interpretability by selecting only the most clinically
relevant lesion characteristics, such as color asymmetry,
border irregularity, and textural patterns, while
eliminating redundant or irrelevant features from high-
dimensional dermoscopic data.

Following initial classification, residual analysis
examines discrepancies between predicted and actual
labels to iteratively refine the model, reducing noise and
enhancing generalization performance. This approach
ensures robust severity assessment by focusing
computational attention on the lesion characteristics most
indicative of malignancy risk, thereby improving
diagnostic precision and clinical relevance.

Consider M skin cancer samples, each characterized
by d-dimensional feature vectors. The input features
form a matrix of dimensions Mxd, with binary outcomes
where 1 indicates malignancy and 0 indicates benign
conditions. The log-odds of a sample representing the
target skin cancer class is given by:

logP(y; =1|z;) =BT (3)

Here, x; denotes the feature vector of the ith sample, 3
represents the regression coefficients of the Log-
Likelihood  Regression  Model (LLRM), and
P(y;=1|a;) is the probability that the i model
corresponds to the target skin cancer, given the estimated
regression coefficients.

Segmentation Performance Evaluation

Accurate evaluation of lesion detection models is
essential for reliable skin cancer diagnosis and

segmentation quality assessment. Multiple
complementary  metrics  provide = comprehensive
performance analysis across different aspects of

segmentation quality.

The Dice Coefficient (DC) and Jaccard Index
quantify spatial overlap between predicted and ground
truth lesion masks, with DC demonstrating enhanced
sensitivity for smaller lesions while Jaccard provides
more conservative boundary comparison. These metrics
collectively assess the volumetric agreement between
algorithmic outputs and expert annotations.

Sensitivity measures the model's capability to
correctly identify true lesion pixels, while specificity
evaluates its performance in recognizing non-lesion
regions. Precision indicates the proportion of accurately
predicted lesion pixels among all positive classifications.
Although accuracy calculates overall pixel classification
correctness, its utility is limited in imbalanced datasets
where lesion regions represent a small fraction of total
pixels.

The Hausdorff Distance provides critical boundary
evaluation by measuring the maximum separation
between predicted and actual lesion contours, offering
insights into edge detection precision and morphological
preservation.

Collectively, these metrics establish a
multidimensional evaluation framework that
comprehensively assesses segmentation performance
across  volumetric, boundary, and classification
dimensions. Figure 4 illustrates the complete
architectural design of the proposed segmentation
framework, demonstrating the integration of these
evaluation components within the overall system.

DERMOSCOPIC IMAGES
. s
e[
o |
|

sing
Enhanced Low Pass Wiener Filter (ELPWF)

SEGMENTATION
Using

Tapartrom
HAMI0000
= _ Database Swin Transformer

@
T ANALYSIS

,,,,,,,,,,,

PRE-PROCESSING {c

FEATURE EXTRACTION

sing
Trvo-phase Self-attention based Hierarchical Capsule Network
(TS-HCaps)

FEATURE SELECTION
Us

| =
| Tent Chaotic Walrus Optimization Algorithm (TCWOA)
|

CLASSIFICATION Q 1

Global Attention-based Multil c Knowledge Alignment |
Distillatior KAD)

CLASSES OF SKIN CANCER DISEASE

Fig. 4: Architectural design of the Suggested work

Results and Discussion

Using skin disease dataset HAM10000, this study
tested the suggested strategy against existing hybrid
classifier models to determine how much it improved
performance. The presented work proposed technique
that greatly improved the classification stage
performance. Three essential steps in the skin lesion
analysis pipeline are depicted in the illustration as
depicted in Table 3 with seven disease classes: BKL,
AKIEC, BCC, DF, MEL, NV, and VASC. The input
image, which shows lesions of various sizes, colors, and
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textures, is the original dermoscopic image taken from
the HAM10000 dataset. The segmented image shows the
result of a lesion segmentation algorithm (such as
attention-based Capsule Networks or U-Net), which
precisely separates the lesion area from the background
to allow for targeted study of the ROI. Lastly, by using
methods like noise reduction, contrast improvement, hair
removal, and normalization, the pre-processed image is
an improved version of the original. Lesion clarity is
increased, artifacts are decreased, and standardized input
is guaranteed for feature extraction and classification
tasks that follow.

Table 3: Performances of suggested method

Class Input Image
Name

BKL

Segmented
Image

Pre-processed
Image

ooQ’ ¢ l»

AKIEC

BCC

DF

MEL

NV

VASC

Segmentation Analysis

The segmentation model feeds pre-processed data
into a progressive attention mechanism, which adds more
relevant features and improves the segmentation model's
performance. The suggested PA-HRST model compared
with Swin Transformer (Pacal et al., 2024), U-Net (Hu et
al., 2024), Autoencoder (Reddy et al., 2023), and VGG-
16 Attention U-Net (Jimi et al., 2024) has a dice score of
9896%, an ASSD analysis of 0008 and HD analysis of
4%, which is compared with existing models to show
their effective performance as shown in Figure 5.

Hausdorff Distance (mm)
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(©
Fig. 5: Segmentation analysis of (a) HD, (b) ASSD, and (c)
Dice Score
Model Performance

All experimental procedures executed within the
parameters of this research were carried out utilizing
Google Colaboratory, a platform that delivers integrated
GPU support conferred by Google. The proposed model
demonstrates exceptional performance with an accuracy
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of 99.18%, as evidenced in Figure 6, significantly
surpassing existing hybrid approaches in classification
efficacy.

Accuracy
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Fig. 6: Model performance analysis showing (a) accuracy
curve and (b) loss curve

The efficacy of merging deep learning architectures is
demonstrated by the performance accuracy of several
hybrid classification models. The Proposed Model
outperforms other models by achieving the maximum
accuracy of 99.18%. Using the sequential learning skills
of RNN with the feature extraction capabilities of
ResNet, the ResNet-RNN (Zareen et al., 2024) comes in
second with 95.76%. The structured deep layers of VGG
help the ResNet-VGG (Tabrizchi et al., 2023) model
achieve 94.73%.

By combining the sequential knowledge of BiLSTM
with the lightweight efficiency of EfficientNet, the
EfficientNet-BiLSTM (Venugopal et al., 2023) achieves
9306% By combining Transformer's attention
mechanism with CNN's spatial feature extraction, the
CNN-Transformer (Pacal et al., 2025) achieves a score
of 9147%. At 9004%, the Swin Transformer-CNN (Pacal
et al., 2024) combines CNN's local feature capture with
hierarchical attention The better performance of the
suggested model points to an improved design that
improves learning, generalization, and feature extraction
This demonstrates its potential for high-accuracy real-

world  applications like  biometric  recognition,
autonomous systems, and medical imaging. Its wider
applicability could be confirmed by additional research
on computing robustness and efficiency. Table 4 provides
the performance metrics associated with each existing
model and performance model.

Table 4: Performance comparison of classification methods with
the Proposed Model

Performance Metrics (%)

Methods Accuracy Specificity Recall Precision F1-

score
ResNet-RNN 95.76  95.01 95.13 9479  94.96
ResNet-VGG 94.73  94.47 94.65 94.39  94.52
EfficientNet- 93.06  92.53 92.7 9247 9259
BiLSTM

CNN-Transformer 91.47 91.16

Swin Transformer- 90.04 89.92
CNN

Proposed Model 99.18  99.03

91.17 90.93  91.05
90.13 89.83  89.98

99.13 99.09  99.11

Training and Testing Metrics for Proposed
Methodology

The efficiency of the model is demonstrated in Figure
7 showing testing accuracy across 300 epochs for several
deep learning models employed in skin cancer
categorization. The suggested model continuously
outperforms designs such as ResNet-RNN, ResNet-
VGG, EfficientNet-BiLSTM, CNN-Transformer, and
Swin Transformer-CNN, with a peak accuracy of almost
99.18%. This demonstrates differentiation between
various skin lesions, which is essential and precise in
identification, particularly the most deadly kind,
melanoma. The suggested method's increased stability
and accuracy point to its resilience in managing the
visual unpredictability and complexity of dermoscopic
images. Diagnostic reliability may be impacted by other
models' lesser accuracy and greater variability, despite
their respectable performance. This performance gap
underscores the value of advanced hybrid architectures in
enhancing skin cancer detection, supporting faster, more
accurate clinical decisions that can ultimately save lives.

Figure 8 highlights the improved performance of the
suggested model by showing the training accuracy across
300 epochs for several deep learning models used to
classify skin cancer. Out of all the architectures,
including CNN-Transformer, Swin Transformer-CNN,
ResNet-RNN, ResNet-VGG, and EfficientNet-BiLSTM,
the suggested model continuously achieves the greatest
accuracy, exceeding 99%. This implies that it has a high
capacity to recognize intricate patterns in dermoscopic
images, which is crucial for detecting distinct categories,
such as basal cell carcinoma and melanoma. Other
models demonstrate consistently lower training accuracy,
indicating less effective learning of complex skin lesion
features. The suggested model's quick convergence and
stability show effective feature extraction and
generalization  throughout training. In  medical
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diagnostics, where early and accurate skin cancer
categorization can greatly enhance patient outcomes,
such performance is essential. These outcomes validate
the efficacy of the suggested approach in training
situations and its potential for clinical implementation in
the real world.
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Fig. 7: Analysis of Testing Accuracy curve
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Figure 9 shows the testing loss across 300 epochs for
several deep learning models used to classify skin cancer.
Better generalization and prediction accuracy are
indicated by a smaller testing loss, which is important in
medical diagnosis. The model continuously outperforms
models such as  ResNet-RNN, ResNet-VGG,
EfficientNet-BiLSTM, CNN-Transformer, and Swin
Transformer-CNN, exhibiting the lowest and most steady
loss throughout training. This implies that the model is
quite successful in reducing mistakes while accurately
identifying various forms. Other models, on the other
hand, show more variable and larger loss values, which

suggests less consistent performance and possible
overfitting or underfitting. The model's quick
convergence and high learning efficiency are

demonstrated by the dramatic decrease in loss within the
first 50 epochs, which is followed by stabilizing. The
suggested model presents a viable method for improving
diagnostic precision and lowering clinical risk in the
setting of skin cancer, where early and precise
categorization can save lives.
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Fig. 9: Analysis of Testing Loss curve

Figure 10 shows the training loss for different deep
learning models used to classify skin cancer across 300
epochs. Effective learning and few prediction mistakes
during model training are demonstrated by the suggested
model's achievement of the lowest and most consistent
training loss. Conversely, models like Swin Transformer-
CNN and CNN-Transformer exhibit more variable and
higher loss, indicating less successful convergence. A
sharp decline in loss throughout the early epochs
demonstrates how well the suggested model can pick up
intricate patterns. Accurately determining the forms
depends on this efficiency, which helps with quicker and
more accurate early diagnosis.
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Fig. 10: Analysis of Training Loss curve

Confusion Matrix

The suggested model's confusion matrix shows
excellent accuracy in identifying several types of skin
cancer, such as actinic keratoses (AKIEC), basal cell
carcinoma (BCC), and melanoma (MEL). Strong
diagonal dominance is seen in the majority of classes,

suggesting  accurate  predictions. Robust model
performance is indicated by the low number of
misclassifications, such as MEL being mistakenly

classified as NV or VASC. Accurately identifying the
types is essential for early detection and treatment of skin
cancer. The model's potential for practical clinical use is
supported by its dependability across various lesion
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types, providing a trustworthy instrument for automated
skin disease classification and enhancing patient
outcomes. Figure 11 highlights the strengths and
weaknesses of proposed model in distinguishing benign
from malignant lesions.

Confusion matrix - Proposed

AKIEC

BCC

BKL

DF

Prediction

MEL

NY

VASC

AKIEC BCC BKIL. DF MEL NV  VASC

Actual
Fig. 11: Confusion Matrix for proposed model

Severity Analysis

This proposed model uses residual lasso with logistic
regression to standardize the regression process by
finding slightly significant features. Here, the residual
lasso model identifies the most relevant features uniform
in noisy information, and the LR model predicts the
severity of cancer. This suggested model attains an MAE
of 0.08, MSE of 0.08, and RMSE of 0.282, respectively.
Figure 12 depicts the proposed model severity analysis.
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Fig. 12: Proposed model severity analysis

Conclusion

Deep learning is very effective in the analysis and
information extraction of large medical data. Using
severity analysis, this proposed model demonstrates an
effective DL-based hybrid model for segmentation and
classification. The HAMI10000 database, which is
publicly available on Kaggle to diagnose skin cancer
early, is ideally suited for multi-class classification and
segmentation. First, the hybrid ELPWF model's pre-

processing phase lowers noise and enhances the quality
of the input images. Complex temporal and hidden
features are extracted using a hybrid DL-based features
extraction model called TS-HCaps after input photos
have been enhanced. The goal of this procedure is to
lessen feature dimensionality problems. The hybrid
TCWOA model then uses the extracted features as input
to choose the best features in order to minimize
computational complexity problems. The hybrid PA-
HRST model uses the pre-processed data to segment the
pertinent skin cancer region; the segmentation method is
effective, as seen by the 4% HD analysis and 0.008078
ASSD achieve 99.18% accuracy, 99.09% precision,
99.13% recall, and a 99.11 Fl-score in the classification
model. The suggested framework performs better than
current  approaches and  accurately classifies
dermatological malignancies associated with skin cancer.
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