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Abstract: The widespread adoption of cloud computing has increased the 

attack surface and raised significant security concerns. A Distributed Denial 

of Service (DDoS) is a serious attack that depletes the network and server 

resources in cloud computing, causing service downtime or reduced 

performance. Therefore, defending against DDoS attacks becomes an urgent 

need. In this present paper, we propose an Optimized Extreme Learning 

Machine based on Genetic Algorithm (GA-OELM) for detecting DDoS 

attack patterns. The proposed model uses an improved GA for optimizing the 

weights and biases of the ELM hidden layer. The experiment is evaluated 
using three datasets namely, CICDDOS2019, NSL-KDD, and UNSW-NB15, 

and proves that the detection performance of the proposed GA-OELM is 

better than the classic ELM model and some state of art techniques. 
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Introduction 

Cloud computing (Cloud, 2011) is an internet-based 

platform that provides and shares resources like storage, 

computation, and networking among multiple tenants. 

These tenants can flexibly meet their IT needs while 

paying only for the resources they consume. As the 

demand for cloud services grows, cloud administrators 

face the challenging task of ensuring both the security and 

availability of cloud services (Syed et al., 2017). 

However, due to its distributed and open-access 

architecture, cloud platforms are susceptible to various 

cyber threats. According to the Cloud Security Alliance 

(CSA) report (Jon-Michael and Greg, 2020), DDoS attack 

is one of the top eleven attacks that frequently hunt the 

cloud environment. In a DDoS attack, the attackers 

remotely command a large network of infected machines, 

known as a botnet, and send an overwhelming volume of 

malicious traffic to the targeted system (Agrawal and 

Tapaswi, 2019; Selamat et al., 2019). This coordinated 

attack aims to exhaust the available resources of the cloud 

such as bandwidth and processing capacity, thereby 

disrupting its normal functioning (Ouhssini et al., 2024). 

Due to the elasticity feature of the cloud, which 

automatically adds computational resources, a DDoS attack 

does not always lead to a downtime in service but it can 

significantly strain resources, escalate the costs, and impact 

the overall system efficiency (Kumar et al., 2024). 

Moreover, in public cloud environments, where resources 

are shared among multiple tenants, there is a risk of collateral 

damage to non-targets by harming their services and causing 

autoscaling of their resources as well (Somani et al., 2017). 

This makes mitigating DDoS attacks a critical priority for 

ensuring the reliability and security of cloud-based 

systems (Balarezo et al., 2022). 
DDoS detection systems are typically categorized into 

two principal approaches (Lata and Singh, 2022): 

Signature-based detection and anomaly-based detection. 

Signature-based detection (Hubballi and Suryanarayanan, 

2014) works by identifying signatures associated with 

known DDoS attacks, making it effective for recognizing 

known threats quickly. However, it may struggle with 
unknown and zero-day attacks (Canfora et al., 2015). In 

contrast, anomaly-based detection monitors traffic for 

deviations from the baseline of normal behavior (Zhao et al., 

2024). Researchers are closely interested in studying 

anomaly-based detection because it can identify 
previously unknown or new attacks, particularly in cloud 

environments where a large number of new DDoS 

attacks may emerge daily. This approach, while more 

flexible, can generate a high number of false positives. 

Requiring tuning to minimize the false alerts and 

optimize the time of detection. 
Anomaly-based detection of DDoS attacks has been 

proposed by Alqarni (2022); Kumar et al. (2023); 

Velliangiri et al. (2021); Songa and Karri (2024); 



Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157 

DOI: 10.3844/jcssp.2025.146.157 

 

147 

Wardana et al. (2024); Lin et al. (2023); 

Shanmugapriya et al. (2024) and relies on the use of 

machine learning models or deep learning models. Mostly 
for the cloud, researchers employ neural networks to 

analyze large volumes of network traffic. Techniques 

such as Extreme Learning Machines (ELM), Recurrent 

Neural Networks (RNNs), and Convolutional Neural 

Networks (CNNs) can significantly enhance DDoS 

detection by analyzing traffic patterns in different 

ways. CNNs (Zoppi et al., 2024; Vibhute and Nakum, 

2024; Alsoufi et al., 2024) excel at detecting DDoS traffic 

by analyzing network data as images or matrices and 

identifying key features of attacks. RNNs, especially 

Long Short-Term Memory (LSTM) (Efendi et al., 2024; 
Kumar et al., 2023), are effective for sequential data 

analysis to recognize unusual spikes or trends that signal 

DDoS attacks. The big challenge with these techniques 

lies in the complexity of processing vast amounts of 

network traffic, which demands substantial 

computational resources and careful tuning of 

hyperparameters to achieve optimal performance, 

making the process time-consuming and requiring high 

expertise. While the ELM technique is suitable for 

detecting DDoS attacks due to its rapid training and 

low computational requirements, it enables quick 

adaptation to change traffic patterns, particularly in 
dynamic environments like cloud computing. 

ELM (Abu Al-Haija et al., 2024; Wang et al., 2022a) 

belongs to a class of Artificial Neural Networks (ANNs), 

which has only one hidden layer. It is trained in one step, 

where the biases and the weights of connections between 

input and hidden layers are initialized at random and the 

weights connecting hidden and output layers are 

computed using Moore–Penrose inverse. However, a 

challenge associated with using the ELM technique is the 

selection of appropriate hyperparameters, specifically the 

weights and biases. A random initialization often does not 

yield optimal performance. To address this issue, many 

soft computing techniques, such as GA (Mitchell, 2016), 

Ant Colony Optimization (ACO) (Dorigo and Stutzle, 

2019), Particle Swarm Optimization (PSO) (Wang et al., 

2018), and Artificial Bee Colony (ABC) (Karaboga and 

Basturk, 2007), for selecting ELM hyperparameters. 

Nonetheless, these optimization techniques have inherent 

drawbacks, including premature convergence and limited 

exploration capabilities. In our paper, we used an 

improved version of GA, The GA algorithm is inspired by 

natural evolution, it imitates the process of biological 

selection to solve optimization problems. The improved 

GA enhances the exploration of the search space within 

populations, helping to avoid local optima and increasing 

the efficiency of the ELM model. Our aim is to identify 

DDoS attacks in cloud computing using GA-OELM with 

high accuracy, minimal false positives, and a short 

detection time. 

Related Works 

Researchers aim to ensure an effective DDoS 

detection mechanism in cloud computing based on 

machine and deep learning techniques. Several articles are 

closely related to our study in the following literature. 

Kumar et al. (2023) proposed an LSTM model to detect 

DDoS attacks; LSTM is a deep learning technique that 

involves feature extraction and selection algorithms. They 

used the 17 relevant features from the CICDDoS2019 

dataset for training the model. The proposed LSTM 

reached an accuracy of 98% and outperformed the K-

Nearest Neighbor (KNN) and ANN algorithms. 
Alqarni, (2022) presented an ensemble technique for 

preventing DDoS attacks in cloud computing. The 

proposed ensemble technique includes four classifiers: 

Support Vector Machine (SVM), Naive Bayes (NB), 

Decision Tree (DT), and KNN and at the end, a majority 

voting algorithm is applied to combine predictions 

produced by these classifiers. In a majority vote, the class 

that receives the highest number of votes is chosen. After 

the preprocessing phase, 15 features from 88 are selected 

through the chi-squared method, and part of the 

CICDDOS2019 dataset is used to train the DDoS 
detection system. The model achieved 98% accuracy and 

outperformed each classifier alone. 

Kushwah and Ranga, (2021) suggested an improved 

evolutionary ELM to identify DDoS attacks in cloud 

computing. SaE-ELM system determined the optimal 

biases and weights to achieve high accuracy for the ELM 

algorithm by means of two features: Using a collection of 

crossover types instead of only one and using different 

neurons in the hidden layer. The proposed model used four 

known datasets for training. The performance of the model 

is better than DT, SVM, and ANN performances.  

Kushwah and Ranga (2020) proposed a DDoS 
detection system for cloud computing based on an 

ensemble technique (V-ELM), which contains a varied 

number of ELM machines (4-56 ELMs), and the final 

prediction is decided by using a majority voting scheme. 

The number of neurons used in the hidden layer of the 

ELM machine is up to 1000. The authors used ISCX and 

NSL-KDD datasets to evaluate the proposed system and 

compared the performance to adaboost, random forest, 

ANN, and Back Propagation Neural Network (BPNN). 

Lin et al. (2023) proposed the integration of a Multi-

Feature Extraction (MFE) ELM model into the cloud 
nodes for detecting and identifying network intrusions. 

The NSLKDD dataset was utilized for training the model, 

with comprehensive steps including data preprocessing, 

feature engineering, and model training. The experimental 

results indicate that the proposed MFE-ELM algorithm 

achieved an accuracy of 96.53%. 

Velliangiri et al. (2021) developed Taylor-Elephant 

Herd Optimisation based on the Deep Belief Network 

model to detect DDoS attacks. The proposed model first 
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gathers log information from each device in the cloud and 

then creates its log file. Next, it extracts the necessary 

features from this file, and by using Bhattacharya 

distance, only key features are selected for classification 

to decrease the training time. TEHO-DBN is adopted to 

train the system. Its accuracy is higher, compared to that 

of NN, Ensemble, and SVM. 

Ali and Kushwah (2019) presented a DDoS detection 

system, which is an ELM with 613 neurons in a hidden 

layer. The performance of the model is assessed on 15097 
samples of the KDD-NSL dataset and compared to the 

BPNN model with 20 neurons. 

Arunadevi and Sathya (2022) introduced an optimized 

BPNN model to detect DDoS attacks in cloud platforms. 

The model leverages the Artificial Plant algorithm to 

optimize the weights and biases of BPNN connections. 

The proposed detection system is evaluated using four 

widely recognized datasets: CIC-IDS 2017, NSL-KDD, 

ISCX-IDS 2012, and UNSW-NB15. The results 

demonstrate that the APO-BPNN system outperformed 

traditional BPNN-based detection systems. 
Hussein Hadi (2024) introduced a CNN-based model 

for DDoS detection, organized into three primary stages: 

Data preprocessing, hyperparameters optimization, and 

classification. The model requires extensive tuning to 

determine the optimal configuration of crucial 

hyperparameters, specifically the number of 

convolutional kernels and the learning rate, in order to 

achieve the best performance. The effectiveness of the 

proposed model was evaluated using the NSL-KDD 

dataset, demonstrating its strong capability in detecting 

DDoS attacks. 

The primary challenge addressed in this study is 
improving detection time and accuracy compared to the 

state-of-the-art methods above. To achieve this, we 

propose an improved GA to optimize the hyperparameters 

of the ELM model. Our optimized ELM model efficiently 

and effectively detects DDoS patterns in cloud 

computing, with a low rate of false positives. 

ELM and GA Background 

In this section, we provide an overview of GA steps, 

the ELM scheme, and the process of its output calculation. 

ELM 

An ELM (Wang et al., 2022b) is a type of neural 

network with a single hidden layer, where the weights 

connecting the input layer to the hidden layer, as well as the 

biases, are randomly assigned and fixed, while the weights 

linking the hidden to the output layer are calculated 

analytically by Moore-Penrose inverse. These randomly set 

parameters do not require adjustment during training, 

simplifying the learning process and making the training 

time of the model very fast. Figure (1). presents the ELM 

scheme, where a, b, and c are the number of features in 

samples, the number of neurons in a hidden layer, and the 

number of neurons in an output layer, respectively. 

Wi,n is the weight connecting the ith input to the nth 

hidden neuron, the set of all weights is represented by the 

W matrix. βn,j represents the weight connecting the nth 

hidden neuron to jth output neuron and the set of all these 

weights is represented by β matrix. bi is the bias of the ith 

hidden neuron (i = 1-b): 
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Suppose, the ELM in Fig. (1) has an activation 

function f with N training samples of the form: S = (xi,yi), 

xi = (xi1,xi2,..., xia)T ∈ RN, yi = (yi1,yi2,...,yic)T ∈ Rc, where xi 

refers the input value and yi represents the target, the 

output oi f an ELM with b hidden neurons can be 

expressed in Eq. (1) as: 
 

1

, 1,..,
b

i i j
i

H o j c


   (1) 

 
where, Hi = f (wixk +bi), k = 1,.....,a. 

The training aims to reduce the error between the 

target and the output of ELM. The most frequently used 

objective function is Mean Squared Error (MSE), which 

is given by Eq. (2): 
 
𝑀𝑆𝐸 = ∑(𝑦𝑖𝑗 − 𝜊𝑖𝑗)2, 𝑗 = 1, . . , 𝑐 (2) 
 

ELM can approximate the output of all training 

samples to the target with Eq. (3), which is called the 

universal approximation capability: 
 
∑‖𝑦𝑖𝑗 − 𝜊𝑖𝑗‖ = 0 (3) 
 

So, there must be a set of wi, bi, and βi that suffices the 

Eq. (4): 
 

1

b

i i j
i

H y


  (4) 

 

 
 
Fig. 1: ELM architecture 
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The formula above can be abbreviated as: Hβ = Y 
Therefore, training ELM is finding the best wi and bi. 
These parameters are initialized randomly and 
independently of the input data and then the output 
weights are calculated by Eq. (5): 
 
𝛽 = 𝐻+𝑌 (5) 
 
where, H+ is the Moore-Pensore inverse of matrix H. 

Genetic Algorithm 

Genetic Algorithm (Mitchell, 2016) is a technique of 

soft computing, that uses the laws of selection and 

evolution, it is essentially used to discover the optimal 

solution to machine learning problems such as feature 

selection in the dataset, choice of algorithm's 

hyperparameters, etc. GA iteratively evolves a population 
of solutions to an optimization problem through processes 

like selection, crossover, and mutation. The following 

mathematical representation of the key components of a 

genetic algorithm: 
 
 Population Generation 

A population of potential solutions is initialized, 

typically at random. Let the population be 

represented as P(t) = (x1(t),x2(t),…,xN(t)) Where: P(t) 

is the population at generation t, xi(t) is the ith 

individual in the population at generation t, N is the 

population size. 

 Fitness function 

A fitness function f(x) is used to evaluate each 
individual in the population, determining how good a 

solution is for the problem. The fitness of individual 

xi(t) is represented by Eq (6): 
 

𝑓(𝑥𝑖(𝑡)) =
𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠tan𝑐𝑒𝑠

𝑡𝑟𝑢𝑒+𝑓𝑎𝑙𝑠𝑒 𝑖𝑛𝑠tan𝑐𝑒𝑠
 (6) 

 
The goal is typically to maximize the fitness function 

over populations: 
 
 Selection 

Individuals are selected based on their fitness scores 

to reproduce and form the next generation. Higher-

fitness individuals have a higher chance of being 
selected. The probability p(xi) of selecting individual 

xi is often proportional to its fitness and represented 

by Eq (7): 
 

𝑝(𝑥𝑖) =
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)
𝑁

𝑗=1

 (7) 

 
where, f(xj) is the fitness of individual xj. 
 
 Crossover 

Crossover combines two parent solutions to create 

offspring. If two parents p1 and p2 are selected, their 
offspring o1 and o2 can be generated by a crossover 

operation. For example, in single-point crossover: 

𝑝1 = (𝑝11 , 𝑝12 , . . . , 𝑝1𝑘 , . . . , 𝑝1𝑛)
𝑝2 = (𝑝21, 𝑝22 , . . . , 𝑝2𝑘 , . . . , 𝑝2𝑛)

 

 

After crossover at point k: 
 

 
 𝜊1 = (𝑝11, 𝑝12 , . . . , 𝑝1𝑘 , 𝑝2(𝑘+1), . . . , 𝑝2𝑛)

𝜊2 = (𝑝21 , 𝑝22, . . . , 𝑝2𝑘 , 𝑝1(𝑘+1). . . , 𝑝1𝑛)
 

 

In two-point crossover: 

 
𝑝1 = (𝑝11, . . . , 𝑝1𝑘 , . . . , 𝑝1𝑘′ , . . . , 𝑝1𝑛)
𝑝2 = (𝑝21 , . . . , 𝑝2𝑘 , . . . , 𝑝2𝑘′ , . . . , 𝑝2𝑛)

 

 
After crossover at points k and k’: 

 
𝜊1 = (𝑝11, 𝑝1𝑘 , 𝑝2, 𝑝2(𝑘+1), … , 𝑝2(𝑘′−1), 𝑝1𝑘′ , … , 𝑝1𝑛

𝜊2 = (𝑝21, 𝑝2𝑘 , 𝑝1 , 𝑝1(𝑘+1), … , 𝑝1(𝑘′−1), 𝑝2𝑘′ , … , 𝑝2𝑛
 

 

This creates two new offspring by exchanging 

segments of the parents. 

 

 Mutation 

Mutation introduces random changes to an individual 

to maintain genetic diversity. For a mutation rate µ, 

some genes xij of an individual xi are mutated. 

 

In a genetic algorithm, the steps below are repeated 

until an optimal solution is obtained or a stopping criterion 
is met. 

Our Proposed Model: GA-OELM 

The flowchart in Fig. (2). illustrates the functioning of 

our proposed DDoS detection system, which consists of 

three main modules: data preparation, ELM training, and 

online DDoS attack detection. 

Data Preparation 

Data preparation is the stage where the data sample is 

prepared for a classifier to improve its accuracy. During the 

training phase, this involves two key steps: Data preprocessing 

and data splitting (Alexandropoulos et al., 2019): 
 
 Data preprocessing involves several essential tasks: 

First, cleaning the data to eliminate missing values 

and outliers; second, converting categorical data into 

numeric format; third, conducting feature selection to 

identify the most relevant features from the dataset 

using statistical algorithm as Anova; fourth, 

normalizing the data to ensure that all features 

contribute equally to the model by scaling all values 

to the range of [0, 1] using the following Eq. (8); and 

finally, applying target encoding to designate benign 

traffic as 0 and malicious traffic as 1: 
 
𝑥′ =

𝑥−𝑥min

𝑥max−𝑥min
 (8) 
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where, xmin and xmax are the minimum and maximum 

values of the given feature x: 
 
 Data splitting involves dividing the dataset into two 

subsets: A training subset, which is used to build the 

model, and a testing subset, which is utilized to assess 

the model's performance and verify its accuracy. 
 

During the detection phase, incoming and internal 

network traffic is captured and then organized into groups. 

These groups are passed to the preprocessing machine to 

extract features as those used in the training phase and 
then to prepare them the same way to be ready for use by 

the GA-OELM classifier. 

ELM Training 

Our proposed GA-OELM is a supervised model for 

DDoS attack detection that requires training with labeled 

samples. These samples are already preprocessed in the 

data preparation stage and they are of the form [xi,yi]. 

Here, xi = [xi1, ...., xia] the features for ith training sample 

and yi is the target, it is equal to 0 in case of normal traffic 

and 1 if not. The training phase uses a genetic algorithm 

to find the values of the weight matrix (w) and hidden 

biases, which allow the ELM classifier to achieve high 

detection accuracy. At first, a population of chromosome 

vectors is created. For each chromosome, the fitness 

function and β matrix are calculated. Then based on 

fitness results, individuals are selected from a population 

to perform mutation and crossover operations: 
 

 Representation of chromosome 

The chromosome size is linked to the architecture of 

ELM, taking an example from Fig. (3). b neurons are 

used in the hidden layer, a is the number of features in 

each sample. Therefore, the length L of the 

chromosome contains all the weights connecting the 

input to the hidden layer as well as the biases L= (a*b) 

+ b. A random initialization of N chromosomes is 

carried out. The training process uses each 

chromosome to train the ELM model. It divides a 

chromosome into two vectors, the first one is reshaped 

to the matrix of a*b dimension and used by input-hidden 

connection weights, and the second vector is used for 

biases. Then ELM model calculates the corresponding 

matrix β as we saw in Eq. (5) 

 Fitness function and selection 

After training the ELM model, it is used to predict the 

output of testing samples. For each chromosome, the 

fitness function is computed. Then parents are selected 

by roulette wheel technique to produce the new children, 

who will replace their parents in the new population 

 Crossover and mutation 

At the crossover step, a random number Cr is 

generated and based on its value the crossover 

process is or not performed. One of two types of 

crossovers is selected either a single-point or two-

point crossover. Whether the crossover did not 

perform, a new child with random values is 

generated to explore the searching space looking for 

potentially better value of weights and biases. In the 

mutation operation, the random gene of the selected 

chromosome is chosen and replaced by a random 

float from a specific range. These processes 

continue with the next generation until the stopping 

criteria are met. Ultimately, the best vector in the 

population represents the optimal values for weights 

and biases of the hidden layer. Algorithm 1 

represents the training phase of the proposed system 
 

 
 
Fig. 2: Flowchart of the proposed system 
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Fig. 3: ELM training 

 

DDoS Attack Detection 

At this stage, the traffic captured from the target cloud 

network is sent to the DDoS detection system. The process 

begins with the data preparation module, which transforms 

the traffic into samples in the form xi = [x1,...,xa]. These 

samples are then fed into the trained GA-OELM model to 

compute the output oi. The model classifies each sample 

based on its prediction. Specifically, if oi = 0, the sample is 

identified as normal traffic; conversely, it is classified as an 

attack, triggering a notification to the cloud manager. The 

detection process of our system is outlined in Algorithm 2. 

Results 

The Used Datasets 

The proposed GA-OELM is applied on three widely 

used datasets, CICDDoS2019, which contains DDoS 

attacks and benign traffic. A CICFlowMeter is used to 

process the network traffic. There are 18 CSV files 

saved for 2 days, the dataset has eighty-eight features, 

contains more than 5 million records of DDoS attacks 

and benign traffic, and has 12 types of DDoS attacks 

(Sharafaldin et al., 2019). 

NSL-KDD dataset, which has forty-one features, the 

training subset KDDTrain+.txt includes 125,973 samples 

and two test subsets KDDTest-21.txt and KDD Test+ .txt, 

they include 11,850 and 22,544 samples, respectively. 

The attacks of this dataset are categorized into four 

categories, DOS, User to Root (U2R), Remote to Local 

(R2L), and Probe (Tavallaee et al., 2009). 

Algorithm 1: ELM training 

1. Initialize x = dataset[features], y = dataset[label], 

L = chromosome length, G = 100, N = 10, Mr = 0.05, 

Sp = 0.75, Cp1 = 0.4, Cp2 = 0.7 

2. Randomly initialize a population of N vectors of length L 

3. For Generation ⪯ G do: 

4. For each individual in the population do: 

5. Convert chromosome to weights matrix of (a*b) 

dimension and bias vector b 

6. Calculate H = f (x*w+ b) 

7. Calculate = H+Y 

8. Calculate fitness using the accuracy metric 

9. End For 

10. Designate the individual with the best fitness as Dbest 

11. For iteration in t = round(N*Sp)/2 (crossover 

process is repeated t times): 

12.       Select two parents from the population 

13.       IF randnum⪯Cp1: Single point crossover is applied 

14.       ELSEIF Cp1 ≺ randnum⪯Cp2: Two-point 
crossover is applied 

15.       ELSE: generate a new child randomly 

16.         ENDIF 

17.       Replacing the selected parents with new offspring 

18. End For 

19. IF randnum ⪯ Mr: mutation is selected 

20. Pass the new population to the next generation 
21. Calculate the fitness function for each solution 

22. Record individual with the best fitness Dbest 

23.    End For 

24. Return the trained GA-OELM model (trained with 

Dbest) 
 
Algorithm 2: DDoS attack detection 

1. For each sample xi do: 
2. Apply the sample to the optimized ELM 

3. Calculate the output oi 

4. IF oi == 1: 

5. Attack detected 

6. Generate alert 

7. End IF 

8. End For 
 

UNSW-NB15 dataset, which includes 9 types of 

attacks named, DoS, Reconnaissance, Analysis, 

Exploits, Backdoor, Fuzzers, Shellcode, Generic, and 

Worms. It has a training subset and a testing subset with 

175,341 samples and 82,332 samples, respectively. The 

dataset has 2,540,044 samples and forty-eight features 

(Moustafa and Slay, 2015). 

CICDDoS2019, NSL-KDD, and UNSW-NB15 

datasets have significant limitations, including synthetic 

or outdated attacks that may not represent modern threats 
or real-world complexity, class imbalances, and the need 

for extensive preprocessing. However, they are valuable 

for academic research due to their accessibility, historical 
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importance, and ability to provide standardized 

benchmarks, which facilitate model comparisons and 

serve as useful starting points for developing new DDoS 
detection systems. 

Performance Metrics 

Several metrics are used to assess the performance of 

the DDoS detection model; the following are applied to 

our model Sensitivity (Sen), Accuracy (Acc), Specificity 

(Sp), and False Positive Rate (FPR). The used metrics are 

presented in Eqs. (9-12) as the following: 
 

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

 

𝐴𝑐𝑐 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
 (10) 

 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 (11) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 (12) 

 
where, True Positive (TP) is an instance, which is 

correctly detected as an actual intrusion, False Positive 

(FP) is an instance, which is a legitimate network activity 

and identified as a DDoS attack. True Negative (TN) is an 

instance, which is correctly identified normal network 

activity as not being a DDoS attack. False Negative (FN) 

is an instance when the detection system fails to identify 

an actual DDoS attack. 

Training Setup 

In this experiment, we used a machine with an i5 CPU 

1.70 GHz, 16 Go of RAM, and Python 3.9. We employed 

the training set and testing set reserved for both UNSW-

NB15 and NSL-KDD and only a part from the 

CICDDoS2019 dataset to avoid the high computational 

cost. The used subsets are split into a training set with 

80% and a testing set with 20% to compare results 

(Alqarni, 2022). Table (1) displays the used part of the 

CICDDoS2019 dataset.  

For the proposed GA-OELM, we prepared the datasets 

by consolidating all attack-type labels into a single 

"attack" label. We transformed nominal values into 

numeric formats, normalized the data, and encoded the 

labels. In this experiment, we retained all features from 

the UNSW-NB15 and NSL-KDD datasets to ensure that 

our results are comparable to those of previous 

researchers mentioned in the literature review. For 

CICDDoS2019, the Anova technique is used from the 

scikit-learn library to select the most relevant feature. 

In this article, a comprehensive performance analysis of 

our model is done. For that, in the ELM hidden layer, we 

varied neuron numbers from 10-50 in the multiple of 10 and 

for each number of neurons we make 100 generations, 

keeping the number of individuals in the population 

constant. The parameters in Table (2) are used for training. 

Results 

Figure (4) displays the testing accuracy for different 

numbers of hidden neurons. We observe that the accuracy 

of GA-OELM improves consistently across all datasets as 

the number of neurons increases. We begin training the 

model with 10 neurons for 100 generations, gradually 

increasing the number of neurons up to 50 in increments 

of 10. We observe an improvement of nearly 2% in 

accuracy when comparing 10 and 50 neurons across most 

datasets. The accuracy tends to increase significantly with 

more neurons. Ultimately, we opt for 50 neurons in the 

hidden layer to maintain manageable computational 
demands. Additionally, this accuracy is competitive 

compared to several state-of-the-art models. 

Figure (5) illustrates the testing accuracy curve of our 

GA-OELM model (with 50 neurons) across all datasets 

over the number of generations. Notably, accuracy 
improves as the number of generations increases, with 

most datasets showing a 10-20% increase in accuracy 

from the first to the 50th generation. After 50 

generations, the improvement diminishes to just 0.02%. 

The KDD Test+ dataset stands out, showing a significant 

accuracy increase after the 70th generation, rising from 
89.79 to 93.55% by the 100th generation. Although other 

datasets might continue to improve beyond 100 

generations, we ended the experiment due to a lack of 

significant progress over the last 40 generations. 
 
Table 1: The used CICDDoS2019 subset 

Total records Benign records DDoS records 

32000 8450 23550 
 
Table 2: Training parameters 

Parameter name  Value 

Population size: N  10 

Hidden neuron: B  10-50 (step:10) 
Mutation rate: Mr  5% 
Selection probability: Sp  75% 
Crossover type: Cp1, Cp2  Cp1=0.4, Cp2=0.7 
 

 
 

Fig. 4: Testing accuracy of different numbers of neurons 
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Fig. 5: Accuracy curve over generations 
 

Table (3) presents the performance metrics (accuracy, 

False Positive Rate (FPR), sensitivity, and specificity) for 

the ELM model optimized using PSO, ACO, Gradient 

Descent, and an improved GA. The model is evaluated with 
50 hidden neurons, across 100 generations and using the 

same subsets of datasets. GA-OELM demonstrates the 

highest accuracy across all datasets, peaking at 99.11% on 
NSLKDD and 98.81% on CICDDOS. PSO-ELM also 

performs well, particularly on NSLKDD with 97.29% and 

CICDDOS with 97.25%. As shown in Fig. (6). GA-OELM 

maintains consistently low false positive rates (1.41-
1.52%) across all datasets, effectively minimizing false 

alarms and reducing the unnecessary blocking of normal 

traffic, while ACO-ELM shows significantly higher FPRs, 
particularly at 55.51% on CICDDOS, indicating challenges 

in accurate classification. GA-OELM demonstrates the 

highest sensitivity for CICDDOS at 99.50%, effectively 
identifying positive instances (attacks), while PSO-ELM 

shows strong sensitivity at 97.71% on UNSW-BN. In terms 

of specificity, GA-OELM maintains high rates (98-99%), 

accurately identifying negative instances, whereas ACO-
ELM struggles with low specificity at 56.90% on 

CICDDOS, indicating a tendency to misclassify normal 

traffic as an attack. Gradient Descent-ELM performs 
moderately, with decent accuracy but lower sensitivity and 

specificity compared to GA-OELM and PSO-ELM. The 

improved GA outperforms PSO, ACO, and gradient 

descent in selecting the optimal hyperparameter for the 
ELM, resulting in better overall performance. 

The performance of the proposed GA-OELM model is 

compared with several widely used machine learning 
models, including Support Vector Machines (SVM), Naive 
Bayes (NB), Artificial Neural Networks (ANN), and classic 
Extreme Learning Machines (ELM). The configuration 

details are as follows: The classic ELM model consists of 
100 neurons in the hidden layer, using a sigmoid activation 
function. The ANN model features a single hidden layer with 

100 neurons, employing the Re LU activation function for 
the hidden layer and the sigmoid function for the output 
layer. For the SVM, we utilize the ‘SVC ‘function from 

Scikit-learn with a polynomial kernel and a maximum of 50 
iterations. The Naive Bayes model uses the ‘Gaussian NB’ 
function from Scikit-learn with its default parameters. 

Table (4) presents the highest accuracy values obtained 
from 10 experiments for training the models on each dataset. 
Table (4) highlights the significant improvements in 
accuracy, sensitivity, and specificity offered by the proposed 
GA-OELM model compared to the four benchmark systems 
across all datasets. Notably, the SVM model produced poor 
classification results, achieving only 52 and 50.73% 
accuracy for the KDD Test+ and KDD Test21 datasets, 
respectively. In contrast, our GA-OELM model 
demonstrates an impressive improvement of approximately 
40%. Furthermore, when trained using the ANN technique, 

the CIC DDoS 2019 dataset and UNSW-NB 15 recorded low 
accuracies of 67 and 81%, respectively, our GA-OELM 
model also outperformed these results with a significant 
improvement of over 15%. GA-OELM model demonstrates 
superior performance compared to the other models, 
consistently achieving higher accuracy, sensitivity, and 
specificity across all datasets. 
 
Table 3: Performance metrics of ELM Model Optimized by different algorithms 

Model Dataset Accuracy% FPR % Sensitivity% Specificity% 

PSO-ELM NSLKDD 97.29 1.56 95.83 98.43 

 CICDDOS 97.25 0.442 90.60 99.55 

 UNSW-BN 90.18 23.08 97.71 76.91 

 

ACO-

ELM 

NSLKDD 79.29 35.30 95.83 64.69 

 CICDDOS 63.52 55.51 78.48 56.90 

 UNSW-BN 74.3 1.472 60.52 98.52 

Gradient 

Descent-

ELM 

NSLKDD 96 2.51 96.80 97.48 

 CICDDOS 95.31 1.57 86.36 98.42 

 UNSW-BN 89 27.92 98.87 72 

GA-

OELM 
NSLKDD 99.11 1.52 99.20 99 

 CICDDOS 98.81 1.41 99.50 98.58 

 UNSW-BN 98.16 1.52 98.25 98.47 

 

 
 
Fig. 6: FPR of ELM model optimized by various algorithms 
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Table 4: Performance comparison with the widely used techniques 

Model Dataset Accuracy 

% 

Sensitivity 

% 

Specificity

% 

ANN KDD TEST+ 64.29 55 90 

 KDD TEST21 70.28 30.45 87 

 CICDDOS 67 41.21 84.65 

 UNSW-BN 81 15 97.7 

ELM KDD TEST+ 74.32 63.79 90.33 

 KDD TEST 21 55.21 23.81 87.47 

 CICDDOS 96.45 98.11 85.61 

 UNSW-BN 89.53 29.58 99.14 

SVM KDD TEST+ 52 52 52.62 

 KDD TEST 21 50.73 50 54.70 

 CICDDOS 80.29 98 79 

 UNSW-BN 90.33 4 95 

NB KDD TEST+ 80.70 72.94 90.98 

 KDD TEST 21 80.69 72.30 88 

 CICDDOS 97.51 98 96.96 

 UNSW-BN 91.37 32.47 98.58 

GA-

OELM 

KDD TEST+ 93.55 91.58 95.10 

KDD TEST 21 82.16 79.30 88.38 

CICDDOS 98.81 99.50 98.58 

UNSW-BN 98.16 98.25 98.47 

 
The performance of our GA-OELM model is also 

compared in Table (5) to the state-of-the-art techniques. 

The GA-OELM model consistently outperforms many 

existing methods. On the NSLKDD dataset, GA-OELM 

achieves the highest accuracy with 99.2% and a strong 

balance between sensitivity 99.09% and specificity 

99.39%, slightly exceeding models used by Kushwah and 

Ranga (2020); Velliangiri et al. (2021); Lin et al. (2023); 

Arunadevi and Sathya (2022); Hussein Hadi (2024). Ali 

and Kushwah (2019) used an ELM model with 613 

neurons to achieve 99.10% accuracy. In contrast, our 

model, with only 400 neurons, achieved 99.2% accuracy. 

This demonstrates that we improved accuracy while 

significantly reducing detection time. On the CICDDoS 

dataset, GA-OELM achieves the highest accuracy of 

98.81% and a sensitivity of 98.25%, demonstrating its 

strong ability to detect true positives accurately. 

Additionally, with a high specificity of 98.47%, the model 

effectively distinguishes normal traffic from DDoS attacks. 

Our GA-OELM shows a small improvement in terms of 

accuracy compared to Alqarni (2022) but the detection time 

of the ELM model is still much shorter than that of the 

majority voting technique used by the authors. For KDD 

TEST+ and KDDTEST21 datasets, GA-OELM also 

outperforms previous models, achieving a higher accuracy 

of 93.55% for KDD TEST+. Finally, on the UNSW-BN 

dataset, GA-OELM demonstrates strong overall 

performance with 98.16% accuracy, 98.25% sensitivity, 

and 98.47% specificity, showcasing its robustness in 

various contexts. Overall, the GA-OELM model 

consistently achieves high accuracy across the datasets and 

generally maintains a good trade-off between sensitivity 

and specificity, outperforming several existing methods in 

most cases. 
Our proposed GA-OELM system effectively 

identifies DDoS attacks and outperforms systems based 

on ANN, SVM, and NB, as well as other state-of-the-art 

approaches. It shows that using both single-point and 

two-point crossover, along with random offspring 
initialization, is more effective than classical crossover 

methods. As shown in Table 6, the main drawback is the 

longer training time, typical of genetic algorithms. 

However, our system performs very quickly during the 

testing phase, making it highly suitable for detecting 

attacks in cloud computing environments. 

Application to Real-World Scenario 

A Cloud Service Provider (CSP) hosts numerous 
critical applications for businesses and users worldwide. 
The CSP is a prime target for DDoS attacks, which can 
disrupt services and cause significant financial damage. 
To prevent this, the CSP needs to deploy our proposed 
DDoS detection system. 
 
Table 5: Performance comparison with the state of arts 

Model Dataset Accuracy

% 

Sensitivity

% 

Specificity

% 

Kushwah and 

Ranga (2020) 

Partial 

NSLKDD 

99.18 99.50 98.86 

Arunadevi and 

Sathya (2022) 

 98.72 99.75 98.61 

Lin et al. (2023)  96.53 - - 

Hussein Hadi 

(2024) 

 97.27 97.9 97.27 

Velliangiri et al. 

(2021) 

 99.10 99.19 98.96 

GA-OELM 

 

 99.2 99.09 99.39 

Alqarni (2022) CICDDOS 98.02 97.45 98.65 

Kumar et al. 

(2023) 
 

98 97 - 

GA-OELM  98.81 98.25 98.6 

Kushwah and 

Ranga (2021) 

KDD 

TEST+ 

86.80 79.30 95.90 

 KDD 

TEST 21 

73.00 59.50 90.20 

 UNSW-

BN 

89.17 80.73 99.58 

 

GA-OELM 

KDD 

TEST+ 

93.55 91.58 95.10 

 KDD 

TEST21 

82.16 79.30 88.38 

 UNSW-

BN 

98.16 98.25 98.47 

 
Table 6: Training and testing times 

 Dataset  

Training time (sec) per KDDTrain+ 0.6398 

ELM instance USWN 0.7568 

 CICDDoS 0.1010 

Testing time (sec) KDDTest 0.0571 

 USWN 0.0145 

 CICDDoS 0.1505 
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Fig. 7: The proposed placement of DDoS detection system 

 

Scenario 1: A DDoS attack originating from outside 

the cloud. As shown in Fig. (7), our DDoS attack detection 

system is positioned at the network's front end to monitor 

all incoming traffic before it enters the CSP platform. 

Scenario 2: A DDoS attack originating from inside the 
cloud. As illustrated in Fig. (7), our DDoS attack detection 

system is strategically placed between the internal switches 

and the hypervisor to detect any DDoS traffic originating 

from internal attackers aiming to compromise the CSP 

resources. The CSP needs to place a DDoS detector at  
different places to continuously monitor all incoming 
traffic to its cloud infrastructure, in addition to critical 

internal traffic. This captured traffic is then collected and 

sent to the DDoS detection system. Where it first undergoes 

preprocessing to prepare the data for analysis. Once 
processed, the data is passed to the detection system, which 

computes the output using the trained GA-OELM model. 

Once an attack is detected, the system sends a notification to 
the cloud managers and potentially activates automated 

countermeasures, such as traffic filtering or rerouting, to 

mitigate the impact of the attack. The cloud managers receive 

a notification and proceed to investigate whether the alert is 
a true positive. If it is confirmed as a true positive, the 

countermeasures remain active. If it is a false positive, the 

managers allow the traffic and plan for future training by 
using the historical and new data to compute a new baseline, 

thereby, optimizing the GA-OELM performance. 

Conclusion 

Cloud computing provides resources as services over 
the Internet. Therefore, their availability is of utmost 

importance. In the present paper, the proposed GA-

OELM is used for DDoS attack detection in cloud 

environments. The model is optimized by using a genetic 

algorithm with two types of crossovers in addition to 

enriching frequently the population by random children to 

further explore the searching space. The GA-OELM 
reaches an accuracy of 98.81, 93.55, 82.16 and 98.16% 

for CICDDoS2019, KDD Test+, KDDTest21, and 

USWN-BN, respectively, which is better compared to 

ANN, SVM, NB and some stat of art techniques. 
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