

© 2025 Meryem Ec-Sabery, Adil Ben Abbou, Abdelali Boushaba, Fatiha Mrabti and Rachid Ben Abbou. This open-access article

is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

The Optimized Extreme Learning Machine (GA-OELM) for

DDoS Attack Detection in Cloud Environment

Meryem Ec-Sabery, Adil Ben Abbou, Abdelali Boushaba, Fatiha Mrabti and Rachid Ben Abbou

Department of Computer Science, Faculty of Sciences and Technology,
Sidi Mohamed Ben Abdellah University, Fez, Morocco

Article history
Received: 03-08-2024

Revised: 08-10-2024
Accepted: 14-10-2024

Corresponding Author:
Meryem Ec-Sabery
Department of Computer
Science, Faculty of Sciences
and Technology, Sidi

Mohamed Ben Abdellah
University, Fez, Morocco
Email: meryem.ecsabery@usmba.ac.ma

Abstract: The widespread adoption of cloud computing has increased the

attack surface and raised significant security concerns. A Distributed Denial

of Service (DDoS) is a serious attack that depletes the network and server

resources in cloud computing, causing service downtime or reduced

performance. Therefore, defending against DDoS attacks becomes an urgent

need. In this present paper, we propose an Optimized Extreme Learning

Machine based on Genetic Algorithm (GA-OELM) for detecting DDoS

attack patterns. The proposed model uses an improved GA for optimizing the

weights and biases of the ELM hidden layer. The experiment is evaluated
using three datasets namely, CICDDOS2019, NSL-KDD, and UNSW-NB15,

and proves that the detection performance of the proposed GA-OELM is

better than the classic ELM model and some state of art techniques.

Keywords: DDoS Attack, Extreme Learning Machine, Genetic Algorithm,

Cloud Computing

Introduction

Cloud computing (Cloud, 2011) is an internet-based

platform that provides and shares resources like storage,

computation, and networking among multiple tenants.

These tenants can flexibly meet their IT needs while

paying only for the resources they consume. As the

demand for cloud services grows, cloud administrators

face the challenging task of ensuring both the security and

availability of cloud services (Syed et al., 2017).

However, due to its distributed and open-access

architecture, cloud platforms are susceptible to various

cyber threats. According to the Cloud Security Alliance

(CSA) report (Jon-Michael and Greg, 2020), DDoS attack

is one of the top eleven attacks that frequently hunt the

cloud environment. In a DDoS attack, the attackers

remotely command a large network of infected machines,

known as a botnet, and send an overwhelming volume of

malicious traffic to the targeted system (Agrawal and

Tapaswi, 2019; Selamat et al., 2019). This coordinated

attack aims to exhaust the available resources of the cloud

such as bandwidth and processing capacity, thereby

disrupting its normal functioning (Ouhssini et al., 2024).

Due to the elasticity feature of the cloud, which

automatically adds computational resources, a DDoS attack

does not always lead to a downtime in service but it can

significantly strain resources, escalate the costs, and impact

the overall system efficiency (Kumar et al., 2024).

Moreover, in public cloud environments, where resources

are shared among multiple tenants, there is a risk of collateral

damage to non-targets by harming their services and causing

autoscaling of their resources as well (Somani et al., 2017).

This makes mitigating DDoS attacks a critical priority for

ensuring the reliability and security of cloud-based

systems (Balarezo et al., 2022).
DDoS detection systems are typically categorized into

two principal approaches (Lata and Singh, 2022):

Signature-based detection and anomaly-based detection.

Signature-based detection (Hubballi and Suryanarayanan,

2014) works by identifying signatures associated with

known DDoS attacks, making it effective for recognizing

known threats quickly. However, it may struggle with
unknown and zero-day attacks (Canfora et al., 2015). In

contrast, anomaly-based detection monitors traffic for

deviations from the baseline of normal behavior (Zhao et al.,

2024). Researchers are closely interested in studying

anomaly-based detection because it can identify
previously unknown or new attacks, particularly in cloud

environments where a large number of new DDoS

attacks may emerge daily. This approach, while more

flexible, can generate a high number of false positives.

Requiring tuning to minimize the false alerts and

optimize the time of detection.
Anomaly-based detection of DDoS attacks has been

proposed by Alqarni (2022); Kumar et al. (2023);

Velliangiri et al. (2021); Songa and Karri (2024);

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

147

Wardana et al. (2024); Lin et al. (2023);

Shanmugapriya et al. (2024) and relies on the use of

machine learning models or deep learning models. Mostly
for the cloud, researchers employ neural networks to

analyze large volumes of network traffic. Techniques

such as Extreme Learning Machines (ELM), Recurrent

Neural Networks (RNNs), and Convolutional Neural

Networks (CNNs) can significantly enhance DDoS

detection by analyzing traffic patterns in different

ways. CNNs (Zoppi et al., 2024; Vibhute and Nakum,

2024; Alsoufi et al., 2024) excel at detecting DDoS traffic

by analyzing network data as images or matrices and

identifying key features of attacks. RNNs, especially

Long Short-Term Memory (LSTM) (Efendi et al., 2024;
Kumar et al., 2023), are effective for sequential data

analysis to recognize unusual spikes or trends that signal

DDoS attacks. The big challenge with these techniques

lies in the complexity of processing vast amounts of

network traffic, which demands substantial

computational resources and careful tuning of

hyperparameters to achieve optimal performance,

making the process time-consuming and requiring high

expertise. While the ELM technique is suitable for

detecting DDoS attacks due to its rapid training and

low computational requirements, it enables quick

adaptation to change traffic patterns, particularly in
dynamic environments like cloud computing.

ELM (Abu Al-Haija et al., 2024; Wang et al., 2022a)

belongs to a class of Artificial Neural Networks (ANNs),

which has only one hidden layer. It is trained in one step,

where the biases and the weights of connections between

input and hidden layers are initialized at random and the

weights connecting hidden and output layers are

computed using Moore–Penrose inverse. However, a

challenge associated with using the ELM technique is the

selection of appropriate hyperparameters, specifically the

weights and biases. A random initialization often does not

yield optimal performance. To address this issue, many

soft computing techniques, such as GA (Mitchell, 2016),

Ant Colony Optimization (ACO) (Dorigo and Stutzle,

2019), Particle Swarm Optimization (PSO) (Wang et al.,

2018), and Artificial Bee Colony (ABC) (Karaboga and

Basturk, 2007), for selecting ELM hyperparameters.

Nonetheless, these optimization techniques have inherent

drawbacks, including premature convergence and limited

exploration capabilities. In our paper, we used an

improved version of GA, The GA algorithm is inspired by

natural evolution, it imitates the process of biological

selection to solve optimization problems. The improved

GA enhances the exploration of the search space within

populations, helping to avoid local optima and increasing

the efficiency of the ELM model. Our aim is to identify

DDoS attacks in cloud computing using GA-OELM with

high accuracy, minimal false positives, and a short

detection time.

Related Works

Researchers aim to ensure an effective DDoS

detection mechanism in cloud computing based on

machine and deep learning techniques. Several articles are

closely related to our study in the following literature.

Kumar et al. (2023) proposed an LSTM model to detect

DDoS attacks; LSTM is a deep learning technique that

involves feature extraction and selection algorithms. They

used the 17 relevant features from the CICDDoS2019

dataset for training the model. The proposed LSTM

reached an accuracy of 98% and outperformed the K-

Nearest Neighbor (KNN) and ANN algorithms.
Alqarni, (2022) presented an ensemble technique for

preventing DDoS attacks in cloud computing. The

proposed ensemble technique includes four classifiers:

Support Vector Machine (SVM), Naive Bayes (NB),

Decision Tree (DT), and KNN and at the end, a majority

voting algorithm is applied to combine predictions

produced by these classifiers. In a majority vote, the class

that receives the highest number of votes is chosen. After

the preprocessing phase, 15 features from 88 are selected

through the chi-squared method, and part of the

CICDDOS2019 dataset is used to train the DDoS
detection system. The model achieved 98% accuracy and

outperformed each classifier alone.

Kushwah and Ranga, (2021) suggested an improved

evolutionary ELM to identify DDoS attacks in cloud

computing. SaE-ELM system determined the optimal

biases and weights to achieve high accuracy for the ELM

algorithm by means of two features: Using a collection of

crossover types instead of only one and using different

neurons in the hidden layer. The proposed model used four

known datasets for training. The performance of the model

is better than DT, SVM, and ANN performances.

Kushwah and Ranga (2020) proposed a DDoS
detection system for cloud computing based on an

ensemble technique (V-ELM), which contains a varied

number of ELM machines (4-56 ELMs), and the final

prediction is decided by using a majority voting scheme.

The number of neurons used in the hidden layer of the

ELM machine is up to 1000. The authors used ISCX and

NSL-KDD datasets to evaluate the proposed system and

compared the performance to adaboost, random forest,

ANN, and Back Propagation Neural Network (BPNN).

Lin et al. (2023) proposed the integration of a Multi-

Feature Extraction (MFE) ELM model into the cloud
nodes for detecting and identifying network intrusions.

The NSLKDD dataset was utilized for training the model,

with comprehensive steps including data preprocessing,

feature engineering, and model training. The experimental

results indicate that the proposed MFE-ELM algorithm

achieved an accuracy of 96.53%.

Velliangiri et al. (2021) developed Taylor-Elephant

Herd Optimisation based on the Deep Belief Network

model to detect DDoS attacks. The proposed model first

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

148

gathers log information from each device in the cloud and

then creates its log file. Next, it extracts the necessary

features from this file, and by using Bhattacharya

distance, only key features are selected for classification

to decrease the training time. TEHO-DBN is adopted to

train the system. Its accuracy is higher, compared to that

of NN, Ensemble, and SVM.

Ali and Kushwah (2019) presented a DDoS detection

system, which is an ELM with 613 neurons in a hidden

layer. The performance of the model is assessed on 15097
samples of the KDD-NSL dataset and compared to the

BPNN model with 20 neurons.

Arunadevi and Sathya (2022) introduced an optimized

BPNN model to detect DDoS attacks in cloud platforms.

The model leverages the Artificial Plant algorithm to

optimize the weights and biases of BPNN connections.

The proposed detection system is evaluated using four

widely recognized datasets: CIC-IDS 2017, NSL-KDD,

ISCX-IDS 2012, and UNSW-NB15. The results

demonstrate that the APO-BPNN system outperformed

traditional BPNN-based detection systems.
Hussein Hadi (2024) introduced a CNN-based model

for DDoS detection, organized into three primary stages:

Data preprocessing, hyperparameters optimization, and

classification. The model requires extensive tuning to

determine the optimal configuration of crucial

hyperparameters, specifically the number of

convolutional kernels and the learning rate, in order to

achieve the best performance. The effectiveness of the

proposed model was evaluated using the NSL-KDD

dataset, demonstrating its strong capability in detecting

DDoS attacks.

The primary challenge addressed in this study is
improving detection time and accuracy compared to the

state-of-the-art methods above. To achieve this, we

propose an improved GA to optimize the hyperparameters

of the ELM model. Our optimized ELM model efficiently

and effectively detects DDoS patterns in cloud

computing, with a low rate of false positives.

ELM and GA Background

In this section, we provide an overview of GA steps,

the ELM scheme, and the process of its output calculation.

ELM

An ELM (Wang et al., 2022b) is a type of neural

network with a single hidden layer, where the weights

connecting the input layer to the hidden layer, as well as the

biases, are randomly assigned and fixed, while the weights

linking the hidden to the output layer are calculated

analytically by Moore-Penrose inverse. These randomly set

parameters do not require adjustment during training,

simplifying the learning process and making the training

time of the model very fast. Figure (1). presents the ELM

scheme, where a, b, and c are the number of features in

samples, the number of neurons in a hidden layer, and the

number of neurons in an output layer, respectively.

Wi,n is the weight connecting the ith input to the nth

hidden neuron, the set of all weights is represented by the

W matrix. βn,j represents the weight connecting the nth

hidden neuron to jth output neuron and the set of all these

weights is represented by β matrix. bi is the bias of the ith

hidden neuron (i = 1-b):

1,1 1, 1,1 1,

,1 , ,1 ,

. .

.

. .

b c

a a b b b c

w w

W

w w

Suppose, the ELM in Fig. (1) has an activation

function f with N training samples of the form: S = (xi,yi),

xi = (xi1,xi2,..., xia)T ∈ RN, yi = (yi1,yi2,...,yic)T ∈ Rc, where xi

refers the input value and yi represents the target, the

output oi f an ELM with b hidden neurons can be

expressed in Eq. (1) as:

1

, 1,..,
b

i i j
i

H o j c

 (1)

where, Hi = f (wixk +bi), k = 1,.....,a.

The training aims to reduce the error between the

target and the output of ELM. The most frequently used

objective function is Mean Squared Error (MSE), which

is given by Eq. (2):

𝑀𝑆𝐸 = ∑(𝑦𝑖𝑗 − 𝜊𝑖𝑗)2, 𝑗 = 1, . . , 𝑐 (2)

ELM can approximate the output of all training

samples to the target with Eq. (3), which is called the

universal approximation capability:

∑‖𝑦𝑖𝑗 − 𝜊𝑖𝑗‖ = 0 (3)

So, there must be a set of wi, bi, and βi that suffices the

Eq. (4):

1

b

i i j
i

H y

 (4)

Fig. 1: ELM architecture

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

149

The formula above can be abbreviated as: Hβ = Y
Therefore, training ELM is finding the best wi and bi.
These parameters are initialized randomly and
independently of the input data and then the output
weights are calculated by Eq. (5):

𝛽 = 𝐻+𝑌 (5)

where, H+ is the Moore-Pensore inverse of matrix H.

Genetic Algorithm

Genetic Algorithm (Mitchell, 2016) is a technique of

soft computing, that uses the laws of selection and

evolution, it is essentially used to discover the optimal

solution to machine learning problems such as feature

selection in the dataset, choice of algorithm's

hyperparameters, etc. GA iteratively evolves a population
of solutions to an optimization problem through processes

like selection, crossover, and mutation. The following

mathematical representation of the key components of a

genetic algorithm:

 Population Generation

A population of potential solutions is initialized,

typically at random. Let the population be

represented as P(t) = (x1(t),x2(t),…,xN(t)) Where: P(t)

is the population at generation t, xi(t) is the ith

individual in the population at generation t, N is the

population size.

 Fitness function

A fitness function f(x) is used to evaluate each
individual in the population, determining how good a

solution is for the problem. The fitness of individual

xi(t) is represented by Eq (6):

𝑓(𝑥𝑖(𝑡)) =
𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠tan𝑐𝑒𝑠

𝑡𝑟𝑢𝑒+𝑓𝑎𝑙𝑠𝑒 𝑖𝑛𝑠tan𝑐𝑒𝑠
 (6)

The goal is typically to maximize the fitness function

over populations:

 Selection

Individuals are selected based on their fitness scores

to reproduce and form the next generation. Higher-

fitness individuals have a higher chance of being
selected. The probability p(xi) of selecting individual

xi is often proportional to its fitness and represented

by Eq (7):

𝑝(𝑥𝑖) =
𝑓(𝑥𝑖)

∑ 𝑓(𝑥𝑗)
𝑁

𝑗=1

 (7)

where, f(xj) is the fitness of individual xj.

 Crossover

Crossover combines two parent solutions to create

offspring. If two parents p1 and p2 are selected, their
offspring o1 and o2 can be generated by a crossover

operation. For example, in single-point crossover:

𝑝1 = (𝑝11 , 𝑝12 , . . . , 𝑝1𝑘 , . . . , 𝑝1𝑛)
𝑝2 = (𝑝21, 𝑝22 , . . . , 𝑝2𝑘 , . . . , 𝑝2𝑛)

After crossover at point k:

 𝜊1 = (𝑝11, 𝑝12 , . . . , 𝑝1𝑘 , 𝑝2(𝑘+1), . . . , 𝑝2𝑛)

𝜊2 = (𝑝21 , 𝑝22, . . . , 𝑝2𝑘 , 𝑝1(𝑘+1). . . , 𝑝1𝑛)

In two-point crossover:

𝑝1 = (𝑝11, . . . , 𝑝1𝑘 , . . . , 𝑝1𝑘′ , . . . , 𝑝1𝑛)
𝑝2 = (𝑝21 , . . . , 𝑝2𝑘 , . . . , 𝑝2𝑘′ , . . . , 𝑝2𝑛)

After crossover at points k and k’:

𝜊1 = (𝑝11, 𝑝1𝑘 , 𝑝2, 𝑝2(𝑘+1), … , 𝑝2(𝑘′−1), 𝑝1𝑘′ , … , 𝑝1𝑛

𝜊2 = (𝑝21, 𝑝2𝑘 , 𝑝1 , 𝑝1(𝑘+1), … , 𝑝1(𝑘′−1), 𝑝2𝑘′ , … , 𝑝2𝑛

This creates two new offspring by exchanging

segments of the parents.

 Mutation

Mutation introduces random changes to an individual

to maintain genetic diversity. For a mutation rate µ,

some genes xij of an individual xi are mutated.

In a genetic algorithm, the steps below are repeated

until an optimal solution is obtained or a stopping criterion
is met.

Our Proposed Model: GA-OELM

The flowchart in Fig. (2). illustrates the functioning of

our proposed DDoS detection system, which consists of

three main modules: data preparation, ELM training, and

online DDoS attack detection.

Data Preparation

Data preparation is the stage where the data sample is

prepared for a classifier to improve its accuracy. During the

training phase, this involves two key steps: Data preprocessing

and data splitting (Alexandropoulos et al., 2019):

 Data preprocessing involves several essential tasks:

First, cleaning the data to eliminate missing values

and outliers; second, converting categorical data into

numeric format; third, conducting feature selection to

identify the most relevant features from the dataset

using statistical algorithm as Anova; fourth,

normalizing the data to ensure that all features

contribute equally to the model by scaling all values

to the range of [0, 1] using the following Eq. (8); and

finally, applying target encoding to designate benign

traffic as 0 and malicious traffic as 1:

𝑥′ =

𝑥−𝑥min

𝑥max−𝑥min
 (8)

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

150

where, xmin and xmax are the minimum and maximum

values of the given feature x:

 Data splitting involves dividing the dataset into two

subsets: A training subset, which is used to build the

model, and a testing subset, which is utilized to assess

the model's performance and verify its accuracy.

During the detection phase, incoming and internal

network traffic is captured and then organized into groups.

These groups are passed to the preprocessing machine to

extract features as those used in the training phase and
then to prepare them the same way to be ready for use by

the GA-OELM classifier.

ELM Training

Our proposed GA-OELM is a supervised model for

DDoS attack detection that requires training with labeled

samples. These samples are already preprocessed in the

data preparation stage and they are of the form [xi,yi].

Here, xi = [xi1,, xia] the features for ith training sample

and yi is the target, it is equal to 0 in case of normal traffic

and 1 if not. The training phase uses a genetic algorithm

to find the values of the weight matrix (w) and hidden

biases, which allow the ELM classifier to achieve high

detection accuracy. At first, a population of chromosome

vectors is created. For each chromosome, the fitness

function and β matrix are calculated. Then based on

fitness results, individuals are selected from a population

to perform mutation and crossover operations:

 Representation of chromosome

The chromosome size is linked to the architecture of

ELM, taking an example from Fig. (3). b neurons are

used in the hidden layer, a is the number of features in

each sample. Therefore, the length L of the

chromosome contains all the weights connecting the

input to the hidden layer as well as the biases L= (a*b)

+ b. A random initialization of N chromosomes is

carried out. The training process uses each

chromosome to train the ELM model. It divides a

chromosome into two vectors, the first one is reshaped

to the matrix of a*b dimension and used by input-hidden

connection weights, and the second vector is used for

biases. Then ELM model calculates the corresponding

matrix β as we saw in Eq. (5)

 Fitness function and selection

After training the ELM model, it is used to predict the

output of testing samples. For each chromosome, the

fitness function is computed. Then parents are selected

by roulette wheel technique to produce the new children,

who will replace their parents in the new population

 Crossover and mutation

At the crossover step, a random number Cr is

generated and based on its value the crossover

process is or not performed. One of two types of

crossovers is selected either a single-point or two-

point crossover. Whether the crossover did not

perform, a new child with random values is

generated to explore the searching space looking for

potentially better value of weights and biases. In the

mutation operation, the random gene of the selected

chromosome is chosen and replaced by a random

float from a specific range. These processes

continue with the next generation until the stopping

criteria are met. Ultimately, the best vector in the

population represents the optimal values for weights

and biases of the hidden layer. Algorithm 1

represents the training phase of the proposed system

Fig. 2: Flowchart of the proposed system

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

151

Fig. 3: ELM training

DDoS Attack Detection

At this stage, the traffic captured from the target cloud

network is sent to the DDoS detection system. The process

begins with the data preparation module, which transforms

the traffic into samples in the form xi = [x1,...,xa]. These

samples are then fed into the trained GA-OELM model to

compute the output oi. The model classifies each sample

based on its prediction. Specifically, if oi = 0, the sample is

identified as normal traffic; conversely, it is classified as an

attack, triggering a notification to the cloud manager. The

detection process of our system is outlined in Algorithm 2.

Results

The Used Datasets

The proposed GA-OELM is applied on three widely

used datasets, CICDDoS2019, which contains DDoS

attacks and benign traffic. A CICFlowMeter is used to

process the network traffic. There are 18 CSV files

saved for 2 days, the dataset has eighty-eight features,

contains more than 5 million records of DDoS attacks

and benign traffic, and has 12 types of DDoS attacks

(Sharafaldin et al., 2019).

NSL-KDD dataset, which has forty-one features, the

training subset KDDTrain+.txt includes 125,973 samples

and two test subsets KDDTest-21.txt and KDD Test+ .txt,

they include 11,850 and 22,544 samples, respectively.

The attacks of this dataset are categorized into four

categories, DOS, User to Root (U2R), Remote to Local

(R2L), and Probe (Tavallaee et al., 2009).

Algorithm 1: ELM training

1. Initialize x = dataset[features], y = dataset[label],

L = chromosome length, G = 100, N = 10, Mr = 0.05,

Sp = 0.75, Cp1 = 0.4, Cp2 = 0.7

2. Randomly initialize a population of N vectors of length L

3. For Generation ⪯ G do:

4. For each individual in the population do:

5. Convert chromosome to weights matrix of (a*b)

dimension and bias vector b

6. Calculate H = f (x*w+ b)

7. Calculate = H+Y

8. Calculate fitness using the accuracy metric

9. End For

10. Designate the individual with the best fitness as Dbest

11. For iteration in t = round(N*Sp)/2 (crossover

process is repeated t times):

12. Select two parents from the population

13. IF randnum⪯Cp1: Single point crossover is applied

14. ELSEIF Cp1 ≺ randnum⪯Cp2: Two-point
crossover is applied

15. ELSE: generate a new child randomly

16. ENDIF

17. Replacing the selected parents with new offspring

18. End For

19. IF randnum ⪯ Mr: mutation is selected

20. Pass the new population to the next generation
21. Calculate the fitness function for each solution

22. Record individual with the best fitness Dbest

23. End For

24. Return the trained GA-OELM model (trained with

Dbest)

Algorithm 2: DDoS attack detection

1. For each sample xi do:
2. Apply the sample to the optimized ELM

3. Calculate the output oi

4. IF oi == 1:

5. Attack detected

6. Generate alert

7. End IF

8. End For

UNSW-NB15 dataset, which includes 9 types of

attacks named, DoS, Reconnaissance, Analysis,

Exploits, Backdoor, Fuzzers, Shellcode, Generic, and

Worms. It has a training subset and a testing subset with

175,341 samples and 82,332 samples, respectively. The

dataset has 2,540,044 samples and forty-eight features

(Moustafa and Slay, 2015).

CICDDoS2019, NSL-KDD, and UNSW-NB15

datasets have significant limitations, including synthetic

or outdated attacks that may not represent modern threats
or real-world complexity, class imbalances, and the need

for extensive preprocessing. However, they are valuable

for academic research due to their accessibility, historical

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

152

importance, and ability to provide standardized

benchmarks, which facilitate model comparisons and

serve as useful starting points for developing new DDoS
detection systems.

Performance Metrics

Several metrics are used to assess the performance of

the DDoS detection model; the following are applied to

our model Sensitivity (Sen), Accuracy (Acc), Specificity

(Sp), and False Positive Rate (FPR). The used metrics are

presented in Eqs. (9-12) as the following:

𝑆𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9)

𝐴𝑐𝑐 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
 (10)

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 (11)

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 (12)

where, True Positive (TP) is an instance, which is

correctly detected as an actual intrusion, False Positive

(FP) is an instance, which is a legitimate network activity

and identified as a DDoS attack. True Negative (TN) is an

instance, which is correctly identified normal network

activity as not being a DDoS attack. False Negative (FN)

is an instance when the detection system fails to identify

an actual DDoS attack.

Training Setup

In this experiment, we used a machine with an i5 CPU

1.70 GHz, 16 Go of RAM, and Python 3.9. We employed

the training set and testing set reserved for both UNSW-

NB15 and NSL-KDD and only a part from the

CICDDoS2019 dataset to avoid the high computational

cost. The used subsets are split into a training set with

80% and a testing set with 20% to compare results

(Alqarni, 2022). Table (1) displays the used part of the

CICDDoS2019 dataset.

For the proposed GA-OELM, we prepared the datasets

by consolidating all attack-type labels into a single

"attack" label. We transformed nominal values into

numeric formats, normalized the data, and encoded the

labels. In this experiment, we retained all features from

the UNSW-NB15 and NSL-KDD datasets to ensure that

our results are comparable to those of previous

researchers mentioned in the literature review. For

CICDDoS2019, the Anova technique is used from the

scikit-learn library to select the most relevant feature.

In this article, a comprehensive performance analysis of

our model is done. For that, in the ELM hidden layer, we

varied neuron numbers from 10-50 in the multiple of 10 and

for each number of neurons we make 100 generations,

keeping the number of individuals in the population

constant. The parameters in Table (2) are used for training.

Results

Figure (4) displays the testing accuracy for different

numbers of hidden neurons. We observe that the accuracy

of GA-OELM improves consistently across all datasets as

the number of neurons increases. We begin training the

model with 10 neurons for 100 generations, gradually

increasing the number of neurons up to 50 in increments

of 10. We observe an improvement of nearly 2% in

accuracy when comparing 10 and 50 neurons across most

datasets. The accuracy tends to increase significantly with

more neurons. Ultimately, we opt for 50 neurons in the

hidden layer to maintain manageable computational
demands. Additionally, this accuracy is competitive

compared to several state-of-the-art models.

Figure (5) illustrates the testing accuracy curve of our

GA-OELM model (with 50 neurons) across all datasets

over the number of generations. Notably, accuracy
improves as the number of generations increases, with

most datasets showing a 10-20% increase in accuracy

from the first to the 50th generation. After 50

generations, the improvement diminishes to just 0.02%.

The KDD Test+ dataset stands out, showing a significant

accuracy increase after the 70th generation, rising from
89.79 to 93.55% by the 100th generation. Although other

datasets might continue to improve beyond 100

generations, we ended the experiment due to a lack of

significant progress over the last 40 generations.

Table 1: The used CICDDoS2019 subset

Total records Benign records DDoS records

32000 8450 23550

Table 2: Training parameters

Parameter name Value

Population size: N 10

Hidden neuron: B 10-50 (step:10)
Mutation rate: Mr 5%
Selection probability: Sp 75%
Crossover type: Cp1, Cp2 Cp1=0.4, Cp2=0.7

Fig. 4: Testing accuracy of different numbers of neurons

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

153

Fig. 5: Accuracy curve over generations

Table (3) presents the performance metrics (accuracy,

False Positive Rate (FPR), sensitivity, and specificity) for

the ELM model optimized using PSO, ACO, Gradient

Descent, and an improved GA. The model is evaluated with
50 hidden neurons, across 100 generations and using the

same subsets of datasets. GA-OELM demonstrates the

highest accuracy across all datasets, peaking at 99.11% on
NSLKDD and 98.81% on CICDDOS. PSO-ELM also

performs well, particularly on NSLKDD with 97.29% and

CICDDOS with 97.25%. As shown in Fig. (6). GA-OELM

maintains consistently low false positive rates (1.41-
1.52%) across all datasets, effectively minimizing false

alarms and reducing the unnecessary blocking of normal

traffic, while ACO-ELM shows significantly higher FPRs,
particularly at 55.51% on CICDDOS, indicating challenges

in accurate classification. GA-OELM demonstrates the

highest sensitivity for CICDDOS at 99.50%, effectively
identifying positive instances (attacks), while PSO-ELM

shows strong sensitivity at 97.71% on UNSW-BN. In terms

of specificity, GA-OELM maintains high rates (98-99%),

accurately identifying negative instances, whereas ACO-
ELM struggles with low specificity at 56.90% on

CICDDOS, indicating a tendency to misclassify normal

traffic as an attack. Gradient Descent-ELM performs
moderately, with decent accuracy but lower sensitivity and

specificity compared to GA-OELM and PSO-ELM. The

improved GA outperforms PSO, ACO, and gradient

descent in selecting the optimal hyperparameter for the
ELM, resulting in better overall performance.

The performance of the proposed GA-OELM model is

compared with several widely used machine learning
models, including Support Vector Machines (SVM), Naive
Bayes (NB), Artificial Neural Networks (ANN), and classic
Extreme Learning Machines (ELM). The configuration

details are as follows: The classic ELM model consists of
100 neurons in the hidden layer, using a sigmoid activation
function. The ANN model features a single hidden layer with

100 neurons, employing the Re LU activation function for
the hidden layer and the sigmoid function for the output
layer. For the SVM, we utilize the ‘SVC ‘function from

Scikit-learn with a polynomial kernel and a maximum of 50
iterations. The Naive Bayes model uses the ‘Gaussian NB’
function from Scikit-learn with its default parameters.

Table (4) presents the highest accuracy values obtained
from 10 experiments for training the models on each dataset.
Table (4) highlights the significant improvements in
accuracy, sensitivity, and specificity offered by the proposed
GA-OELM model compared to the four benchmark systems
across all datasets. Notably, the SVM model produced poor
classification results, achieving only 52 and 50.73%
accuracy for the KDD Test+ and KDD Test21 datasets,
respectively. In contrast, our GA-OELM model
demonstrates an impressive improvement of approximately
40%. Furthermore, when trained using the ANN technique,

the CIC DDoS 2019 dataset and UNSW-NB 15 recorded low
accuracies of 67 and 81%, respectively, our GA-OELM
model also outperformed these results with a significant
improvement of over 15%. GA-OELM model demonstrates
superior performance compared to the other models,
consistently achieving higher accuracy, sensitivity, and
specificity across all datasets.

Table 3: Performance metrics of ELM Model Optimized by different algorithms

Model Dataset Accuracy% FPR % Sensitivity% Specificity%

PSO-ELM NSLKDD 97.29 1.56 95.83 98.43

 CICDDOS 97.25 0.442 90.60 99.55

 UNSW-BN 90.18 23.08 97.71 76.91

ACO-

ELM

NSLKDD 79.29 35.30 95.83 64.69

 CICDDOS 63.52 55.51 78.48 56.90

 UNSW-BN 74.3 1.472 60.52 98.52

Gradient

Descent-

ELM

NSLKDD 96 2.51 96.80 97.48

 CICDDOS 95.31 1.57 86.36 98.42

 UNSW-BN 89 27.92 98.87 72

GA-

OELM
NSLKDD 99.11 1.52 99.20 99

 CICDDOS 98.81 1.41 99.50 98.58

 UNSW-BN 98.16 1.52 98.25 98.47

Fig. 6: FPR of ELM model optimized by various algorithms

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

154

Table 4: Performance comparison with the widely used techniques

Model Dataset Accuracy

%

Sensitivity

%

Specificity

%

ANN KDD TEST+ 64.29 55 90

 KDD TEST21 70.28 30.45 87

 CICDDOS 67 41.21 84.65

 UNSW-BN 81 15 97.7

ELM KDD TEST+ 74.32 63.79 90.33

 KDD TEST 21 55.21 23.81 87.47

 CICDDOS 96.45 98.11 85.61

 UNSW-BN 89.53 29.58 99.14

SVM KDD TEST+ 52 52 52.62

 KDD TEST 21 50.73 50 54.70

 CICDDOS 80.29 98 79

 UNSW-BN 90.33 4 95

NB KDD TEST+ 80.70 72.94 90.98

 KDD TEST 21 80.69 72.30 88

 CICDDOS 97.51 98 96.96

 UNSW-BN 91.37 32.47 98.58

GA-

OELM

KDD TEST+ 93.55 91.58 95.10

KDD TEST 21 82.16 79.30 88.38

CICDDOS 98.81 99.50 98.58

UNSW-BN 98.16 98.25 98.47

The performance of our GA-OELM model is also

compared in Table (5) to the state-of-the-art techniques.

The GA-OELM model consistently outperforms many

existing methods. On the NSLKDD dataset, GA-OELM

achieves the highest accuracy with 99.2% and a strong

balance between sensitivity 99.09% and specificity

99.39%, slightly exceeding models used by Kushwah and

Ranga (2020); Velliangiri et al. (2021); Lin et al. (2023);

Arunadevi and Sathya (2022); Hussein Hadi (2024). Ali

and Kushwah (2019) used an ELM model with 613

neurons to achieve 99.10% accuracy. In contrast, our

model, with only 400 neurons, achieved 99.2% accuracy.

This demonstrates that we improved accuracy while

significantly reducing detection time. On the CICDDoS

dataset, GA-OELM achieves the highest accuracy of

98.81% and a sensitivity of 98.25%, demonstrating its

strong ability to detect true positives accurately.

Additionally, with a high specificity of 98.47%, the model

effectively distinguishes normal traffic from DDoS attacks.

Our GA-OELM shows a small improvement in terms of

accuracy compared to Alqarni (2022) but the detection time

of the ELM model is still much shorter than that of the

majority voting technique used by the authors. For KDD

TEST+ and KDDTEST21 datasets, GA-OELM also

outperforms previous models, achieving a higher accuracy

of 93.55% for KDD TEST+. Finally, on the UNSW-BN

dataset, GA-OELM demonstrates strong overall

performance with 98.16% accuracy, 98.25% sensitivity,

and 98.47% specificity, showcasing its robustness in

various contexts. Overall, the GA-OELM model

consistently achieves high accuracy across the datasets and

generally maintains a good trade-off between sensitivity

and specificity, outperforming several existing methods in

most cases.
Our proposed GA-OELM system effectively

identifies DDoS attacks and outperforms systems based

on ANN, SVM, and NB, as well as other state-of-the-art

approaches. It shows that using both single-point and

two-point crossover, along with random offspring
initialization, is more effective than classical crossover

methods. As shown in Table 6, the main drawback is the

longer training time, typical of genetic algorithms.

However, our system performs very quickly during the

testing phase, making it highly suitable for detecting

attacks in cloud computing environments.

Application to Real-World Scenario

A Cloud Service Provider (CSP) hosts numerous
critical applications for businesses and users worldwide.
The CSP is a prime target for DDoS attacks, which can
disrupt services and cause significant financial damage.
To prevent this, the CSP needs to deploy our proposed
DDoS detection system.

Table 5: Performance comparison with the state of arts

Model Dataset Accuracy

%

Sensitivity

%

Specificity

%

Kushwah and

Ranga (2020)

Partial

NSLKDD

99.18 99.50 98.86

Arunadevi and

Sathya (2022)

 98.72 99.75 98.61

Lin et al. (2023) 96.53 - -

Hussein Hadi

(2024)

 97.27 97.9 97.27

Velliangiri et al.

(2021)

 99.10 99.19 98.96

GA-OELM

 99.2 99.09 99.39

Alqarni (2022) CICDDOS 98.02 97.45 98.65

Kumar et al.

(2023)

98 97 -

GA-OELM 98.81 98.25 98.6

Kushwah and

Ranga (2021)

KDD

TEST+

86.80 79.30 95.90

 KDD

TEST 21

73.00 59.50 90.20

 UNSW-

BN

89.17 80.73 99.58

GA-OELM

KDD

TEST+

93.55 91.58 95.10

 KDD

TEST21

82.16 79.30 88.38

 UNSW-

BN

98.16 98.25 98.47

Table 6: Training and testing times

 Dataset

Training time (sec) per KDDTrain+ 0.6398

ELM instance USWN 0.7568

 CICDDoS 0.1010

Testing time (sec) KDDTest 0.0571

 USWN 0.0145

 CICDDoS 0.1505

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

155

Fig. 7: The proposed placement of DDoS detection system

Scenario 1: A DDoS attack originating from outside

the cloud. As shown in Fig. (7), our DDoS attack detection

system is positioned at the network's front end to monitor

all incoming traffic before it enters the CSP platform.

Scenario 2: A DDoS attack originating from inside the
cloud. As illustrated in Fig. (7), our DDoS attack detection

system is strategically placed between the internal switches

and the hypervisor to detect any DDoS traffic originating

from internal attackers aiming to compromise the CSP

resources. The CSP needs to place a DDoS detector at
different places to continuously monitor all incoming
traffic to its cloud infrastructure, in addition to critical

internal traffic. This captured traffic is then collected and

sent to the DDoS detection system. Where it first undergoes

preprocessing to prepare the data for analysis. Once
processed, the data is passed to the detection system, which

computes the output using the trained GA-OELM model.

Once an attack is detected, the system sends a notification to
the cloud managers and potentially activates automated

countermeasures, such as traffic filtering or rerouting, to

mitigate the impact of the attack. The cloud managers receive

a notification and proceed to investigate whether the alert is
a true positive. If it is confirmed as a true positive, the

countermeasures remain active. If it is a false positive, the

managers allow the traffic and plan for future training by
using the historical and new data to compute a new baseline,

thereby, optimizing the GA-OELM performance.

Conclusion

Cloud computing provides resources as services over
the Internet. Therefore, their availability is of utmost

importance. In the present paper, the proposed GA-

OELM is used for DDoS attack detection in cloud

environments. The model is optimized by using a genetic

algorithm with two types of crossovers in addition to

enriching frequently the population by random children to

further explore the searching space. The GA-OELM
reaches an accuracy of 98.81, 93.55, 82.16 and 98.16%

for CICDDoS2019, KDD Test+, KDDTest21, and

USWN-BN, respectively, which is better compared to

ANN, SVM, NB and some stat of art techniques.

Acknowledgment

We express our profound gratitude to FST, ISA
laboratory for providing the necessary facilities for

conducting this research.

Funding Information

This research was conducted independently by the

authors without external financial support or assistance.

Author’s Contributions

Meryem Ec-Sabery: Participated in all experiments,

coding, building the trained models. She also evaluated
the results and made significant contributions to the

writing of the manuscript.
Rachid Ben Abbou: Designed the research plan,

revised and edited the manuscript.
Fatiha Mrabti: Provided essential guidance, revised

and edited the manuscript.
Adil Ben Abbou and Abdelali Boushaba:

Reviewed the manuscript and provided insightful,
constructive feedback.

Ethics

The present study represents an original research

effort. The corresponding author confirms that all co-

authors have reviewed and approved the manuscript, with

no ethical issues raised.

Reference

Abu Al-Haija, Q., Altamimi, S., & AlWadi, M. (2024).

Analysis of Extreme Learning Machines (ELMs) for

Intelligent Intrusion Detection Systems: A Survey.

Expert Systems with Applications, 253, 124317.

https://doi.org/10.1016/j.eswa.2024.124317

Agrawal, N., & Tapaswi, S. (2019). Defense Mechanisms

Against DDoS Attacks in a Cloud Computing

Environment: State-of-the-Art and Research

Challenges. IEEE Communications Surveys &
Tutorials, 21(4), 3769–3795.

https://doi.org/10.1109/comst.2019.2934468

Alexandropoulos, S.-A. N., Kotsiantis, S. B., & Vrahatis,

M. N. (2019). Data Preprocessing in Predictive Data

Mining. The Knowledge Engineering Review, 34, e1.

https://doi.org/10.1017/s026988891800036x

https://doi.org/10.1016/j.eswa.2024.124317
https://doi.org/10.1109/comst.2019.2934468
https://doi.org/10.1017/s026988891800036x

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

156

Ali, S. T., & Kushwah, G. S. (2019). Distributed Denial

of Service Attacks Detection in Cloud Computing

Using Extreme Learning Machine. International

Journal of Communication Networks and Distributed
Systems, 23(3), 328–351.

https://doi.org/10.1504/ijcnds.2019.10022365

Alqarni, A. A. (2022). Majority Vote-Based Ensemble
Approach for Distributed Denial of Service Attack

Detection in Cloud Computing. Journal of Cyber

Security and Mobility, 11(2), 265–278.

https://doi.org/10.13052/jcsm2245-1439.1126
Alsoufi, M. A., Siraj, M. M., Ghaleb, F. A., Al-Razgan, M.,

Al-Asaly, M. S., Alfakih, T., & Saeed, F. (2024).

Anomaly-Based Intrusion Detection Model Using
Deep Learning for IoT Networks. Computer Modeling

in Engineering & Sciences, 141(1), 823–845.

https://doi.org/10.32604/cmes.2024.052112

Arunadevi, M., & Sathya, V. (2022). Optimized Back
Propagation Neural Network for Ddos Attack

Detection in the Cloud Environment.

Balarezo, J. F., Wang, S., Chavez, K. G., Al-Hourani, A.,
& Kandeepan, S. (2022). A survey on DoS/DDoS

attacks mathematical modelling for traditional, SDN

and virtual networks. Engineering Science and
Technology, an International Journal, 31, 101065.

https://doi.org/10.1016/j.jestch.2021.09.011

Canfora, G., Di Sorbo, A., Mercaldo, F., & Visaggio, C. A.

(2015). Obfuscation Techniques against Signature-
Based Detection: A Case Study. 2015 Mobile Systems

Technologies Workshop (MST), 21–26.

https://doi.org/10.1109/mst.2015.8
Cloud, H. (2011). The Nist Definition of Cloud

Computing. National Institute of Science and

Technology, Special Publication, 800(2011), 145.

Dorigo, M., & Stutzle, T. (2019). Ant Colony
Optimization: Overview and Recent Advances. In M.

Gendreau & J. Y. Potvin (Eds.), International Series

in Operations Research & Management Science
(Vol. 272, pp. 311–351). Springer.

https://doi.org/10.1007/978-3-319-91086-4_10

Efendi, R., Wahyono, T., & Widiasari, I. R. (2024).

DBSCAN SMOTE LSTM: Effective Strategies for
Distributed Denial of Service Detection in

Imbalanced Network Environments. Big Data and

Cognitive Computing, 8(9), 118.
https://doi.org/10.3390/bdcc8090118

Hubballi, N., & Suryanarayanan, V. (2014). False Alarm

Minimization Techniques in Signature-Based
Intrusion Detection Systems: A Survey. Computer

Communications, 49, 1–17.

https://doi.org/10.1016/j.comcom.2014.04.012

Hussein Hadi, T. (2024). Deep Learning-Based DDoS
Detection in Network Traffic Data. International

Journal of Electrical and Computer Engineering

Systems, 15(5), 407–414.
https://doi.org/10.32985/ijeces.15.5.3

Jon-Michael, C. B., A., G., & Greg, J. (2020). Top Threats

to Cloud Computing the Egregious 11.

Karaboga, D., & Basturk, B. (2007). A Powerful and

Efficient Algorithm for Numerical Function
Optimization: Artificial Bee Colony (ABC)

Algorithm. Journal of Global Optimization, 39(3),

459–471. https://doi.org/10.1007/s10898-007-9149-x
Kumar, D., Pateriya, R. K., Gupta, R. K., Dehalwar, V., &

Sharma, A. (2023). DDoS Detection Using Deep

Learning. Procedia Computer Science, 218, 2420–2429.

https://doi.org/10.1016/j.procs.2023.01.217
Kumar, S., Dwivedi, M., Kumar, M., & Gill, S. S. (2024).

A Comprehensive Review of Vulnerabilities and AI-

Enabled Defense against DDoS Attacks for Securing
Cloud Services. Computer Science Review, 53, 100661.

https://doi.org/10.1016/j.cosrev.2024.100661

Kushwah, G. S., & Ranga, V. (2020). Voting Extreme

Learning Machine Based Distributed Denial of
Service Attack Detection in Cloud Computing.

Journal of Information Security and Applications, 53,

102532. https://doi.org/10.1016/j.jisa.2020.102532
Kushwah, G. S., & Ranga, V. (2021). Optimized Extreme

Learning Machine for Detecting Ddos Attacks in

Cloud Computing. Computers & Security, 105,
102260. https://doi.org/10.1016/j.cose.2021.102260

Lata, S., & Singh, D. (2022). Intrusion Detection System

in Cloud Environment: Literature Survey & Future

Research Directions. International Journal of
Information Management Data Insights, 2(2), 100134.

https://doi.org/10.1016/j.jjimei.2022.100134

Lin, H., Xue, Q., Feng, J., & Bai, D. (2023). Internet of
Things Intrusion Detection Model and Algorithm

Based on Cloud Computing and Multi-Feature

Extraction Extreme Learning Machine. Digital

Communications and Networks, 9(1), 111–124.
https://doi.org/10.1016/j.dcan.2022.09.021

Moustafa, N., & Slay, J. (2015). UNSW-NB15: A

Comprehensive Data Set for Network Intrusion
Detection Systems (UNSW-NB15 Network Data

Set). 2015 Military Communications and Information

Systems Conference (MilCIS), 1–6.

https://doi.org/10.1109/milcis.2015.7348942
Mitchell, M. (2016). Melanie mitchell. ACM

SIGEVOlution, 8(2): 4–4.

Ouhssini, M., Afdel, K., Akouhar, M., Agherrabi, E., &
Abarda, A. (2024). Advancements in detecting,

preventing and mitigating DDoS attacks in cloud

environments: A comprehensive systematic review
of state-of-the-art approaches. Egyptian Informatics

Journal, 27, 100517.

https://doi.org/10.1016/j.eij.2024.100517

Selamat, A., Yusof, A. R., & Udzir, N. I. (2019). Systematic
Literature Review and Taxonomy for DDoS Attack

Detection and Prediction. International Journal of

Digital Enterprise Technology, 1(3), 292–315.
https://doi.org/10.1504/ijdet.2019.10019068

https://doi.org/10.1504/ijcnds.2019.10022365
https://doi.org/10.13052/jcsm2245-1439.1126
https://doi.org/10.32604/cmes.2024.052112
https://doi.org/10.1016/j.jestch.2021.09.011
https://doi.org/10.1109/mst.2015.8
https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.3390/bdcc8090118
https://doi.org/10.1016/j.comcom.2014.04.012
https://doi.org/10.32985/ijeces.15.5.3
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1016/j.procs.2023.01.217
https://doi.org/10.1016/j.cosrev.2024.100661
https://doi.org/10.1016/j.jisa.2020.102532
https://doi.org/10.1016/j.cose.2021.102260
https://doi.org/10.1016/j.jjimei.2022.100134
https://doi.org/10.1016/j.dcan.2022.09.021
https://doi.org/10.1109/milcis.2015.7348942
https://doi.org/10.1016/j.eij.2024.100517
https://doi.org/10.1504/ijdet.2019.10019068

Meryem Ec-Sabery et al. / Journal of Computer Science 2025, 21 (1): 146.157

DOI: 10.3844/jcssp.2025.146.157

157

Sharafaldin, I., Lashkari, A. H., Hakak, S., & Ghorbani,

A. A. (2019). Developing Realistic Distributed

Denial of Service (DDoS) Attack Dataset and
Taxonomy. 2019 International Carnahan

Conference on Security Technology (ICCST), 1–8.

https://doi.org/10.1109/ccst.2019.8888419

Somani, G., Gaur, M. S., Sanghi, D., Conti, M., & Buyya,

R. (2017). DDoS attacks in cloud computing: Issues,

taxonomy and future directions. Computer

Communications, 107, 30–48.

https://doi.org/10.1016/j.comcom.2017.03.010

Songa, A. V., & Karri, G. R. (2024). An Integrated SDN

Framework for Early Detection of DDoS Attacks in

Cloud Computing. Journal of Cloud Computing,
13(1), 64. https://doi.org/10.1186/s13677-024-

00625-9

Syed, H. J., Gani, A., Ahmad, R. W., Khan, M. K., &

Ahmed, A. I. A. (2017). Cloud monitoring: A review,

taxonomy and open research issues. Journal of

Network and Computer Applications, 98, 11–26.

https://doi.org/10.1016/j.jnca.2017.08.021

Shanmugapriya, D., Dhanya, C., Asha, S., Padmavathi, G.

and Suthisini, D. N. P. (2024). Cloud insider threat

detection using deep learning models. In 2024 11th

International Conference on Computing for

Sustainable Global Development (INDIACom),
pages 434–438. IEEE.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A.

(2009). A Detailed Analysis of the KDD CUP 99

Data set. 2009 IEEE Symposium on Computational

Intelligence for Security and Defense Applications,

1–6. https://doi.org/10.1109/cisda.2009.5356528

Velliangiri, S., Karthikeyan, P., & Vinoth Kumar, V.

(2021). Detection of Distributed Denial of Service

Attack in Cloud Computing Using the Optimization-

Based Deep Networks. Journal of Experimental &

Theoretical Artificial Intelligence, 33(3), 405–424.
https://doi.org/10.1080/0952813x.2020.1744196

Vibhute, A. D., & Nakum, V. (2024). Deep learning-

based network anomaly detection and classification

in an imbalanced cloud environment. Procedia
Computer Science, 232, 1636–1645.

https://doi.org/10.1016/j.procs.2024.01.161

Wang, D., Tan, D., & Liu, L. (2018). Particle Swarm

Optimization Algorithm: An Overview. Soft

Computing, 22(2), 387–408.

https://doi.org/10.1007/s00500-016-2474-6

Wang, B., Hua, Q., Zhang, H., Tan, X., Nan, Y., Chen, R.,

& Shu, X. (2022a). Research on Anomaly Detection

and Real-Time Reliability Evaluation with the Log of

Cloud Platform. Alexandria Engineering Journal,

61(9), 7183–7193.
https://doi.org/10.1016/j.aej.2021.12.061

Wang, J., Lu, S., Wang, S.-H., & Zhang, Y.-D. (2022b).

A review on extreme learning machine. Multimedia

Tools and Applications, 81(29), 41611–41660.

https://doi.org/10.1007/s11042-021-11007-7

Wardana, A. A., Kołaczek, G., Warzyński, A., & Sukarno,

P. (2024). Ensemble Averaging Deep Neural

Network for Botnet Detection in Heterogeneous

Internet of Things Devices. Scientific Reports, 14(1),

3878. https://doi.org/10.1038/s41598-024-54438-6

Zhao, F., Li, H., Niu, K., Shi, J., & Song, R. (2024).

Application of Deep Learning-Based Intrusion
Detection System (IDS) in Network Anomaly Traffic

Detection. Applied and Computational Engineering,

86, 250–256. https://doi.org/10.54254/2755-

2721/86/20241604

Zoppi, T., Gazzini, S., & Ceccarelli, A. (2024). Anomaly-

Based Error and Intrusion Detection in Tabular Data:

No DNN Outperforms Tree-Based Classifiers.

Future Generation Computer Systems, 160, 951–965.

https://doi.org/10.1016/j.future.2024.06.051

https://doi.org/10.1109/ccst.2019.8888419
https://doi.org/10.1016/j.comcom.2017.03.010
https://doi.org/10.1186/s13677-024-00625-9
https://doi.org/10.1186/s13677-024-00625-9
https://doi.org/10.1016/j.jnca.2017.08.021
https://doi.org/10.1109/cisda.2009.5356528
https://doi.org/10.1080/0952813x.2020.1744196
https://doi.org/10.1016/j.procs.2024.01.161
https://doi.org/10.1007/s00500-016-2474-6
https://doi.org/10.1016/j.aej.2021.12.061
https://doi.org/10.1007/s11042-021-11007-7
https://doi.org/10.1038/s41598-024-54438-6
https://doi.org/10.54254/2755-2721/86/20241604
https://doi.org/10.54254/2755-2721/86/20241604
https://doi.org/10.1016/j.future.2024.06.051

