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Abstract: Detecting tiny objects remains a significant hurdle in computer
vision, primarily due to scale variation, occlusion, and the loss of detail in
low-resolution features. Although YOLO-based detectors are popular for
their speed and efficiency in real-time tasks, they often struggle with
accurately identifying small objects because of information loss during
downsampling. This study introduces an improved YOLO-based model that
integrates a Multi- Scale Module (MSM) and a Spatial-Channel Attention
Mechanism (SCAM) to address these challenges. The MSM, replacing
YOLO's traditional focus layer, captures features at multiple resolutions to
enhance localization across various object sizes. Meanwhile, SCAM
improves detection accuracy by emphasizing important spatial and channel
features, especially in crowded or visually complex scenes. The model's
performance was tested on the PKLot dataset, showing notable gains in
precision, recall, and mean average precision (mAP) over the standard
YOLO-v5, while preserving real-time processing capabilities. This approach
offers a practical and scalable solution for tasks like smart parking, traffic
surveillance, and automated vehicle monitoring, where detecting small-scale
objects is essential.

Keywords: Tiny Object Detection, YOLO-based Framework, Multi-Scale
Module (MSM), Spatial-Channel Attention Mechanism (SCAM), Real-time
Object Detection, Autonomous Surveillance Systems

Introduction
As deep learning-based object detection models

(Feng et al., 2024) gain widespread use in applications
like smart surveillance, autonomous vehicles, and
intelligent transportation systems, accurately detecting
tiny objects continues to pose a major challenge. Among
the various object detection frameworks, You Only Look
Once (YOLO) (Mariyappan et al., 2024) has emerged as
a popular choice due to its strong balance between
detection speed and accuracy, making it well-suited for
real-time scenarios. Nevertheless, its ability to detect
small objects diminishes because detailed spatial
information is often lost during the feature extraction and
downsampling stages. In smart city applications,
particularly in parking space monitoring and traffic
surveillance, the need for accurate tiny object detection is
crucial for optimizing urban mobility and reducing
congestion.

One of the primary difficulties in detecting small
objects is the significant loss of spatial details during the
feature extraction process. YOLO-based architectures
utilize Convolutional Neural Networks (CNNs)

(Shanmuga Sundari et al., 2023) that apply multiple
pooling and downsampling layers to reduce
computational complexity and increase inference speed.

However, these operations also reduce the resolution
of small objects, making them difficult to detect. The
imbalance between large and small object detection
further exacerbates the issue, as deep learning models
tend to prioritize larger, more prominent features during
training.

Existing YOLO-based models are trained on large-
scale datasets such as COCO and ImageNet, which
primarily contain objects captured from lateral or frontal
perspectives. In contrast, real-world traffic and parking
applications often rely on aerial or top-down views,
where objects appear significantly smaller and are more
prone to occlusion. Traditional region-based detectors
such as R-CNN and Faster R-CNN perform well for
high-resolution objects but are computationally
expensive and unsuitable for real-time inference [4].
One-stage detectors, such as YOLO and SSD, offer faster
detection but struggle with small-scale objects due to
inadequate multi-scale feature extraction.
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To improve YOLO’s performance for detecting tiny
objects, researchers have explored various modifications
in network architecture and training methodologies
(Diwan et al., 2023). One approach involves enhancing
Feature Pyramid Networks (FPNs) to better capture
multi-scale representations. By integrating spatial
attention mechanisms, YOLO-based models can retain
finer details and emphasize small object features during
detection.

An effective strategy for improving tiny object
detection involves the use of dilated convolutions, which
expand the receptive field without reducing the
resolution of feature maps. This allows the model to
gather more contextual information while retaining
critical fine details. Additionally, using high-resolution
input images and incorporating feature fusion techniques
—by combining outputs from different convolutional
layers—enhances the network’s ability to retain and
leverage detailed spatial information, which is essential
for accurately detecting small-scale objects.

Anchor box refinement is another crucial aspect of
improving tiny object detection. Standard YOLO models
use pre-defined anchor boxes that may not be optimized
for small object detection in aerial or top-down views.
Adaptive anchor scaling and clustering techniques help
in better fitting the anchor sizes to the specific dataset,
leading to improved precision for small objects.

Tiny object detection plays a vital role in various
smart city applications. In parking space monitoring,
accurate identification of available spots helps in
reducing traffic congestion and improving urban
mobility. Automated parking systems require precise
detection of vehicles, often captured from aerial cameras
where traditional detection methods struggle.

Accurate detection of small objects like pedestrians,
bicycles and license plates plays a vital role in traffic
surveillance, contributing to both road safety and the
effective enforcement of traffic laws. The ability to
identify these objects in real-time allows for more
efficient traffic management and enhances law
enforcement capabilities. Additionally, improved tiny
object detection in autonomous vehicles contributes to
better obstacle recognition, reducing the risk of accidents
in urban environments.

While YOLO has revolutionized real-time object
detection, its limitations in detecting small objects
necessitate further research and architectural
improvements. Enhancements such as feature pyramid
networks, dilated convolutions, anchor box optimization
and high-resolution inputs have shown promise in
improving tiny object detection performance (Ragab et
al., 2024). As deep learning continues to evolve, the
integration of these techniques will play a crucial role in
advancing smart surveillance, intelligent transportation
and urban mobility solutions. Overcoming these
obstacles is essential for developing object detection

systems that are both efficient and dependable in
practical, real-world environments. The Figure (1) shows
the realtime traffic and flow of vehicles in signal.

Fig. 1: Traffic signal picture

Literature Survey

Real-time applications like smart surveillance,
autonomous vehicles and intelligent transportation
systems face considerable challenges in detecting small
objects, primarily due to the loss of detailed spatial
information during feature extraction and downsampling.
While You Only Look Once (YOLO) has established
itself as a dominant real-time object detection
framework, its performance diminishes when detecting
small objects. Recent research endeavors have focused
on enhancing YOLO’s capabilities to address this issue.

Ji et al. (2024) introduced YOLO-TLA, an improved
object detection model built upon YOLOv5, specifically
optimized for detecting small objects. To better capture
fine-grained features, the architecture adds an extra
detection layer within the neck’s feature pyramid,
enabling the production of higher-resolution feature
maps. The backbone integrates a C3CrossConv module,
which utilizes a sliding window approach to extract
features efficiently, reducing both computational cost and
parameter count. Additionally, a global attention
mechanism is employed to combine channel-wise and
contextual information, generating a weighted feature
map that emphasizes relevant object regions while
minimizing background interference. Evaluations on the
MS COCO validation set show that YOLO-TLA
outperforms the YOLOv5s baseline by 4.6% in
mAP@0.5 and 4% in mAP@0.5:0.95, maintaining a
compact architecture with only 9.49 million parameters.

Xu et al. (2024) tackled the problem of detecting
oriented tiny objects, which often lack rich visual

http://192.168.1.15/data/13016/fig1.jpg
http://192.168.1.15/data/13016/fig1.jpg
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features but are common in practical scenarios. To
support this effort, they introduced AI-TOD-R, a novel
dataset comprising the smallest objects among existing
oriented object detection datasets. The dataset supports
both fully-supervised and label-efficient evaluation
benchmarks. Their study revealed a learning bias
inherent in many training pipelines, where confidently
detected objects become increasingly reinforced, while
less distinguishable, oriented tiny objects receive
diminishing attention—ultimately impairing detection
performance. To overcome this imbalance, the authors
introduced a Dynamic Coarse-to-Fine Learning (DCFL)
framework designed to encourage balanced learning
across object scales and enhance the detection accuracy
of difficult-to-detect small objects. By progressively
refining feature representations from coarse to fine
levels, DCFL helps the model focus more effectively on
subtle details, leading to improved performance on small
and occluded targets.

Zheng et al. (2024) introduced LAM-YOLO, an
object detection model tailored for drone-based
applications. The architecture incorporates a light-
occlusion attention mechanism to improve the visibility
and detection of small objects under varying lighting
conditions. To enhance feature interaction across layers,
the model integrates Involution modules, promoting
more efficient information exchange. Furthermore, the
authors proposed an enhanced SIB-IoU regression loss
function, which not only speeds up convergence but also
boosts localization precision. To strengthen the detection
of small-scale objects, the model includes two auxiliary
detection heads, contributing to more robust performance
in aerial scenarios.

Zhang et al. (2024) focused on the problem of
detecting densely packed and small objects in intelligent
surveillance environments, where severe occlusion poses
significant challenges. To address this, they proposed
DS-YOLO, a detection algorithm built upon YOLOv8s.
The architecture incorporates a lightweight backbone
built with an improved C2fUIB module, which reduces
computational complexity while expanding the receptive
field. This design enables the model to capture more
comprehensive contextual information and better handle
occlusions. To further enhance performance, the model
integrates a multi-scale feature fusion network called
Light-weight Full Scale PAFPN (LFS-PAFPN), along
with the DO-C2f module. These additions significantly
improve the model’s capability to merge features across
various scales, boosting detection accuracy, particularly
for small and densely packed objects.

Benjumea et al. (2023) introduced YOLO-Z, a set of
refined models based on YOLOv5, tailored to enhance
small object detection in autonomous driving
environments. By optimizing both the architecture and
parameters, YOLO-Z achieved up to a 6.9% increase in
mean Average Precision (mAP) for small objects at a
50% Intersection over Union (IoU), with only a slight

rise of 3 ms in inference time compared to the original
YOLOv5.

In a separate study, two improved versions of yolos
were proposed for detecting small objects in aerial
imagery which is shown in Table (1). These models
removed the P5 layer in the backbone and integrated
coordinate attention mechanisms, resulting in
performance boosts of 7.7 and 10.8%, respectively, on
the VisDrone2019 dataset.
Table 1: Summary of recent literature on tiny object detection

enhancements

Author(s)
& Year

Model /
Approach

Key Techniques Performance /
Outcome

Ji et al.
(2024)

YOLO-
TLA

Added extra
detection layer,
C3CrossConv
module, global
attention mechanism

+4.6% mAP@0.5,
+4% mAP@0.5:0.95
compared to
YOLOv5s baseline

Xu et al.
(2024)

AI-TOD-R
Dataset &
DCFL

New dataset for
oriented tiny objects;
Dynamic Coarse-to-
Fine Learning
(DCFL) framework

Improved detection
of subtle, small, and
occluded objects

Zheng et
al. (2024)

LAM-
YOLO

Light-occlusion
attention mechanism,
Involution modules,
enhanced SIB-IoU
regression loss

Faster convergence,
improved localization
precision, better
detection under
varying lighting

Zhang et
al. (2024)

DS-YOLO Improved C2fUIB
backbone,
Lightweight Full
Scale PAFPN (LFS-
PAFPN) for multi-
scale feature fusion

Enhanced detection
of densely packed
small objects with
reduced
computational cost

Benjumea
et al.
(2023)

YOLO-Z Architecture and
parameter
optimization for
small objects in
autonomous driving
environments

Up to 6.9% increase
in detection
performance

Zuo et al.
(2024)

Improved
YOLOv8

Removed P5 layer,
integrated coordinate
attention
mechanisms 

7.7% and 10.8%
mAP improvement
on VisDrone2019
dataset

Proposed Process Flow

The process flow diagram Figure (2) visually
illustrates the workflow of the proposed YOLO-MSM-
SCAM object detection framework. The pipeline begins
with an Input Image, which undergoes multi-resolution
feature extraction through the Multi-Scale Module
(MSM). These multi-scale features are then passed to the
Backbone (CSPDarknet) for further processing and
spatial feature extraction. To enhance important spatial
and channel-specific features, a Spatial-Channel
Attention Mechanism (SCAM) is applied, refining the
feature maps by emphasizing significant regions. The
refined features are then fused at multiple levels within
the YOLO Neck for contextual integration. The
Detection Head generates bounding box predictions and



Shanmuga Sundari Mariyappan et al. / Journal of Computer Science 2025, 21 (6): 1343.1353
DOI: 10.3844/jcssp.2025.1343.1353

1346

class probabilities, which are subsequently refined
through post-processing techniques like Non-Maximum
Suppression (NMS). The final output consists of
accurately detected objects, making the framework
highly effective for tiny object detection in real-time
environments.

Fig. 2: Process flow of the SCAM

Methodology

Tiny object detection poses significant challenges due
to scale variations, occlusions, and reduced feature
representation. In this work, we propose an enhanced
YOLO-based framework (Sirisha et al., 2023)
incorporating a Multi-Scale Module (MSM) and Spatial-
Channel Attention Mechanism (SCAM) to improve the
detection of small objects, particularly vehicles in
parking and traffic monitoring applications. The MSM
extracts multi-resolution features to enhance localization,
while SCAM refines feature selection through spatial
and channel-wise attention. The combination of these
two mechanisms ensures higher accuracy while
maintaining computational efficiency for real-time
inference.

Multi-Scale Module (MSM)

Standard YOLO architectures rely on downsampling
layers (Ravinder and Srinivasan, 2024) to extract
features, which can lead to the loss of fine details critical
for detecting tiny objects. The conventional Focus layer
in YOLOv5 compresses input images through slicing and
concatenation, limiting its ability to capture multi-scale
spatial information. To address this, we propose
replacing the Focus layer with an MSM that enables the
model to process multiple scales of input features before
downsampling.

Architecture

The MSM consists of three parallel branches
operating at different scales:

Original Scale (x1): The standard input resolution to
preserve primary object features

Double Scale (x2): An up sampled version to
enhance feature representation for small objects
Quadruple Scale (x4): A further upsampled version
to capture finer spatial details

Figure (3) illustrates the process flow of the proposed
YOLO-MSM-SCAM object detection framework. The
pipeline begins with an input image, which is first
processed by the Multi-Scale Module (MSM) to extract
multi-resolution feature maps.

Fig. 3: MSM architecture

The SM-SCAM YOLO architecture integrates a
Multi-Scale Module and a Spatial Channel Attention
Mechanism to significantly enhance object detection
performance. By applying multiple convolution
operations with varying kernel sizes (Kumar et al., 2023)
followed by ReLU and spatial attention layers, the model
captures rich, multi-scale spatial features. These features
are concatenated and passed through a channel-spatial
attention block utilizing multi-scale average pooling and
a sigmoid activation to emphasize informative features
while suppressing irrelevant ones. The resulting
attention-weighted features are combined with the
original input via element-wise operations, ensuring a
robust and context-aware representation that boosts
detection accuracy across varying object scales and
cluttered backgrounds.

Each branch processes the image using an Efficient
Neural Network (ENet) initial block, which consists of:
A 3×3 convolutional layer with a small number of filters.
A parallel max-pooling operation (Kaur et al., 2024) to
retain crucial spatial information. A concatenation layer
that fuses multi-resolution features before feeding them
into the backbone. Finally, the outputs from all three
branches are downsampled and merged, ensuring a richer
feature representation while keeping the number of
trainable parameters low.

Spatial-Channel Attention Mechanism (SCAM)

While MSM improves feature extraction, not all
extracted features contribute equally to object detection.
Small objects are often occluded or located in cluttered
backgrounds, requiring selective enhancement of
important features. To address this, we integrate SCAM,

http://192.168.1.15/data/13016/fig2.PNG
http://192.168.1.15/data/13016/fig2.PNG
http://192.168.1.15/data/13016/fig3.png
http://192.168.1.15/data/13016/fig3.png
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(1)

(2)

which applies spatial and channel-wise attention to refine
feature selection dynamically.

Architecture

SCAM consists of two key components: Spatial
Attention Module (SAM): Determines where relevant
features are located by computing a weighted spatial
feature map. It uses:

Convolutional transformations to extract feature
relationships
Element-wise multiplication to amplify critical
regions
Element-wise multiplication to amplify critical
regions

Channel Attention Module (CAM): Identifies what
features are important by assigning importance scores to
each channel. It uses:

Global average pooling and max pooling to
compute a compact feature descriptor
Fully connected layers with sigmoid activation to
reweight feature channels

Figure (4) shows the final output is obtained by
combining SAM and CAM outputs, ensuring that the
model focuses on discriminative regions and meaningful
feature maps.

Fig. 4: Spatial-channel attention mechanism architecture

Integration into YOLO Architecture

The proposed MSM and SCAM are seamlessly
integrated into the YOLO framework as follows:

Replacing the Focus Layer with MSM: This enhances
the input feature extraction process, allowing for a richer
representation of small objects. The original focus layer
in YOLOv5 was designed to rapidly compress image
data through slicing and concatenation, but this approach
often loses critical small-object details. By replacing it
with MSM, the model can process multi-resolution
features early in the pipeline, improving tiny object
detection while maintaining computational efficiency.

Incorporating SCAM into the Backbone: The
attention mechanism is applied at the end of the
backbone before passing features to the neck, ensuring

that only the most relevant features are retained. SCAM
enhances the feature maps dynamically, suppressing
background noise and highlighting small objects that
might otherwise be missed. This results in more refined
feature selection and significantly improves object
localization, especially for occluded and low-resolution
targets.

Optimized Feature Fusion in the Neck: The YOLO
architecture’s neck section plays a critical role in fusing
features extracted at different levels of abstraction. With
the MSM-enhanced feature maps and SCAM-filtered
attention layers, the neck can better consolidate spatial
and contextual information before the final detection
step. This integration ensures that the model remains
lightweight while achieving superior detection accuracy.

Maintaining Real-Time Performance: Despite these
modifications, the proposed framework preserves
YOLO’s real-time capabilities by leveraging
computationally efficient convolutional operations and
attention modules. The MSM’s parallel processing and
SCAM’s lightweight attention calculations allow the
model to maintain high inference speeds suitable for
real-world deployment.

Integrated Architecture

Multi-Scale Module (MSM) and Spatial-Channel
Attention Mechanism (SCAM) used in the YOLO
integration:

Multi-Scale Module (MSM)

The MSM enhances feature extraction by processing
input at multiple scales: Feature Extraction at Different
Scales Given an input image I with dimensions × H×W,
MSM applies different scaling factors s and extracts
features using convolutional layers:

Multi-Scale Module (MSM)

The MSM enhances feature extraction by processing
input at multiple scales.

Feature Extraction at Different Scales

Given an input image I with dimensions H ×W, MSM
applies different scaling factors s and extracts features
using convolutional layers:

Each scaled image Is is processed using
convolutional operations F(Is):

where:

Ws and bs are the convolution kernel weights and
bias for scale s,
σ is the activation function (ReLU or LeakyReLU),
∗ represents the convolution operation.

I
​ =s Resize I, s.H, s.W , s ∈( ) 1, 2, 3{ }

F
​ =s σ W

​ ∗ I
​ + b

​( s s s)

http://192.168.1.15/data/13016/fig4.png
http://192.168.1.15/data/13016/fig4.png
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Finally, the multi-scale feature maps are concatenated
and fused:

Spatial-Channel Attention Mechanism (SCAM)

SCAM consists of the Spatial Attention Module
(SAM) and the Channel Attention Module (CAM) to
refine features dynamically.

Spatial Attention Module (SAM)

Spatial attention determines where to focus by
computing a spatial weight map:

where:

Ms is the spatial attention map,
⊙ is the element-wise multiplication,
AvgPool and MaxPool extract spatial feature
importance.

Channel Attention Module (CAM)

Channel attention determines what features are
important by computing a weight vector:

where:

W1, W2 are learnable weights for fully connected
layers,
Mc is the channel attention map.

Final Attention Fusion

The refined features from SAM and CAM are
combined:

This allows the model to selectively enhance small-
object features while suppressing irrelevant background
noise. The neck component of the YOLO architecture is
essential for merging features obtained from various
levels of abstraction. By utilizing MSM-enhanced feature
maps alongside SCAM-filtered attention layers, the neck
effectively integrates spatial and contextual information
prior to the final detection phase. This combination
allows the model to maintain a lightweight structure
while delivering enhanced detection precision.

Algorithm: YOLO with Multi-Scale Module (MSM)
and Spatial-Channel Attention Mechanism (SCAM)

The provided pseudo-code outlines the integration of
the Multi-Scale Module (MSM) and Spatial Channel
Attention Mechanism (SCAM) into the YOLO
architecture for enhanced object detection. The algorithm
first processes the input image by replacing the
traditional Focus Layer with MSM, enabling multi-scale
feature extraction to improve the detection of small
objects. The extracted features are then passed through
the backbone network, where SCAM is applied to refine
the feature representation by focusing on the most
relevant spatial and channel-wise information. After
feature refinement, the processed data moves to the neck
and prediction head for final object classification and
localization. By leveraging MSM and SCAM within
YOLO, the algorithm improves precision, recall and
mean Average Precision (mAP), making it particularly
effective for detecting objects in complex real-world
environments.

Experimental Setup

Dataset

The proposed model is evaluated using the PKLot
dataset, which contains parking lot images captured from
a cenital (top-down) perspective. The dataset includes
over 4474 images with nearly 424,269 annotated parking
spots labeled as occupied or vacant. For training and
testing, we apply an 80/20 split of the dataset, ensuring a
balanced distribution of images across different lighting
conditions and weather variations.

Figure (5) exhibits the different perfromance metrics
values for object detection process.

Fig. 5: Inference time comparison graph

Evaluation Metrics

To assess the model’s performance, we use standard
object detection metrics:

Algorithm 1 YOLO-based Tiny Object Detection
with MSM and SCAM

F
​ =MSM Concat F

​,F ​,F ​( 1 2 3)

F
​ =final Conv F

​

( MSM )

M
​ =s σ Conv AvgPool F ,MaxPool F( ([ ( ) ( )]))

F
​ =SAM M

​ ⊙s F

M
​

= σ W
​

ReLU W
​

AvgPool F , MaxPool Fc ( 2 ( ( 1 [ ( ) ( )])))

F
​ =CAM M

​ ⊙c F

F
​ =sCAM Conv F

​,F ​( SAM CAM )

F
​ =output Concat F

​

,F
​

( MSM CAM )

http://192.168.1.15/data/13016/fig5.PNG
http://192.168.1.15/data/13016/fig5.PNG
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Input: Image  with dimensions 

Output: Detected objects with bounding boxes and class
probabilities

Step 1: Preprocessing

1. Resize  to standard YOLO input size
2. Normalize pixel values
3. Apply data augmentation (flipping, scaling, rotation)

Step 2: Multi-Scale Feature Extraction (MSM)

for each scale  do

1.  ▷ Rescale input

2.  ▷ Apply convolutional layers
end for

1. 

2. 

Step 3: Backbone Processing

1. Pass  through CSPDarknet for feature extraction

Step 4: Spatial-Channel Attention Mechanism
(SCAM)

Compute spatial attention:

1. 

2. 
Compute channel attention:

1. 

2. 

Fuse attention-enhanced features:

1. 

Step 5: Neck and Head Processing

1. Pass  through PANet and Bi-FPN for feature
fusion

2. Apply final detection layers to predict bounding
boxes and class probabilities

Step 6: Post-Processing
1. Apply Non-Maximum Suppression (NMS) to remove

redundant bounding boxes
2. Return final object detections with confidence scores

Precision (P): Measures the accuracy of the model’s
positive predictions by calculating the ratio of true
positives to the total number of predicted positives
Recall (R): Reflects the model’s ability to identify
all relevant objects by determining the proportion of
true positives among the actual ground-truth
instances
Mean Average Precision (mAP): Assesses detection
performance across various IoU thresholds, such as

mAP@0.5 and the averaged range mAP@0.5:0.95,
offering a comprehensive evaluation of accuracy
Inference Speed: Expressed in Frames Per Second
(FPS), it indicates how quickly the model can
process and detect objects in real-time applications
Model Complexity: Evaluated based on the total
number of parameters and computational
requirements, highlighting the model’s resource
efficiency and suitability for deployment

Results and Performance Analysis

The evaluation results comparing the proposed
YOLOMSM-SCAM model against the baseline
YOLOv5 model are presented in Table (1).

Materials and Methods
Dataset description: For the evaluation of the

proposed YOLO-MSM-SCAM framework, the PKLot
dataset was selected due to its relevance for real-world
urban monitoring applications. The dataset comprises
4,474 parking lot images captured from a top-down
(cenital) perspective, covering various lighting
conditions, weather situations and levels of traffic
congestion. The images contain approximately 424,269
annotated parking spots, labeled as either occupied or
vacant, providing a rich resource for testing small object
detection capabilities in cluttered and occluded
environments. The dataset was divided using an 80/20
train-test split, ensuring balanced representation across
conditions.

The primary goal of this study was to enhance the
detection of tiny and occluded objects by integrating
multiscale feature extraction and adaptive attention
mechanisms within the YOLO framework. The modified
architecture introduces two key components:

Multi-Scale Module (MSM): The MSM replaces the
traditional Focus layer in YOLOv5, processing input
images at three different scales: Original (x1), double
(x2) and quadruple (x4). Each scaled image undergoes a
lightweight convolutional operation, followed by feature
map concatenation. This ensures that features of various
resolutions are retained before downsampling, enhancing
the localization of small and distant objects.

Spatial-Channel Attention Mechanism (SCAM):
SCAM dynamically refines the extracted features by
applying spatial attention and channel-wise attention.
The Spatial Attention Module (SAM) identifies
important spatial regions, while the Channel Attention
Module (CAM) assigns significance to individual feature
channels. This selective enhancement allows the model
to emphasize discriminative features and suppress
background noise, especially beneficial in crowded urban
scenes.

Integration into YOLO Architecture: The MSM and
SCAM modules were seamlessly integrated into the
YOLOv5 architecture:

I H × W

I

s ∈ 1, 2, 3{ }

I
​

= Resize I, s.H, s.Ws ( )
F

​

= σ W
​

∗ I
​

+ b
​

s ( s s s)

F
​

= Concat F
​

, F
​

, F
​

MSM ( 1 2 3)

F
​

= Conv F
​

final ( MSM)

F
​

final

M
​

= σ Conv AvgPool F , MaxPool Fs ( ([ ( ) ( )]))

F
​

= M
​

⊙ FSAM s

M
​

= σ W
​

ReLU W
​

AvgPool F , MaxPool Fc ( 2 ( ( 1 [ ( ) ( )])))
F

​

= M
​

⊙ FCAM c

F
​

= Conv F
​

, F
​

sCAM ( SAM CAM)

F
​

sCAM
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MSM was positioned at the input feature extraction
stage, replacing the Focus layer
SCAM was applied at the end of the backbone
network before feature maps entered the neck
component
The enhanced features were then fused using the
PANet and Bi-FPN structures in the neck for
multiscale feature integration

Finally, the YOLO detection head predicted object
classes and bounding box locations, followed by Non-
Maximum Suppression (NMS) to eliminate redundant
detections.

Experimental Results

Performance Comparison Table

Here is the performance comparison table for
YOLObased models and other object detection models:
Table (2) presents the comparative performance metrics
of different object detection models, including YOLO
variants, Faster R-CNN, SSD, EfficientDet and
RetinaNet.
Table 2: Performance comparison of object detection models

Model Precision
(%)

Recall
(%)

mAP@0.5
(%)

mAP@0.5:0.95
(%)

YOLOv5
(Baseline)

63.87 79.24 84.32 52.91

YOLO-MSM 91.20 86.45 92.37 61.45
YOLO-MSM-
SCAM

96.34 89.87 94.21 65.78

Faster R-CNN 85.12 82.78 88.90 58.34
SSD 78.45 76.23 80.45 55.12
EfficientDet 88.76 85.69 91.23 60.98
RetinaNet 82.35 80.12 86.78 57.45

Comparison with Baseline YOLO

The evaluation results comparing the proposed
YOLOMSM-SCAM model against the baseline
YOLOv5 model are presented in Table (3).
Table 3: Comparison of YOLO-based models on tiny object

detection

Model Precision
(%)

Recall
(%)

mAP@0.5
(%)

mAP@0.5:0.95
(%)

YOLOv5
(Baseline)

63.87 79.24 84.32 52.91

YOLO-MSM 91.20 86.45 92.37 61.45
YOLO-MSM-
SCAM

96.34 89.87 94.21 65.78

Inference Time Comparison Graph

The inference time of an object detection model is a
crucial factor in real-time applications, as it determines
how quickly a model can process an image and generate
predictions. The comparison graph illustrates the
inference times of various models, including YOLOv5,

YOLO-MSM, YOLO-MSM-SCAM, Faster R-CNN,
SSD, Efficient Det and Retina Net. YOLO-based models
generally exhibit lower inference times due to their
optimized architecture, making them more suitable for
real-time applications. Faster R-CNN, on the other hand,
shows the highest inference time due to its region
proposal network, which increases computational
complexity. SSD and Efficient Det balance between
speed and accuracy, with moderate inference times.
Overall, YOLO-MSM-SCAM achieves a trade-off
between efficiency and performance, making it a
promising approach for object detection tasks.

Figure (6) displays the graphical result related to
inferece value with time comparision. Figure (7) is the
line graph for showing the performance analysis.

Fig. 6: Inference time comparison graph

Fig. 7: Graph comparing precision, recall, mAP@0.5, and
mAP@0.50.95

Figure (8) depicts a real-time object detection
scenario in an urban traffic setting, where various objects
such as people, vehicles, bicycles and traffic lights are
accurately identified and labeled using a deep learning-
based detection model like YOLO. The bounding boxes
highlight different categories, demonstrating the model’s
capability to distinguish multiple objects within a
dynamic environment. This technology is crucial for
applications such as autonomous driving, smart traffic
management and pedestrian safety, as it enables quick
and efficient recognition of elements in real-world
scenarios. The ability to process and analyze such images
in real-time makes object detection an essential
component of modern computer vision applications.

http://192.168.1.15/data/13016/fig6.jpg
http://192.168.1.15/data/13016/fig6.jpg
http://192.168.1.15/data/13016/fig7.jpg
http://192.168.1.15/data/13016/fig7.jpg
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Figure (9) presents the result analysis of the proposed
YOLO-MSM-SCAM model in a real-time urban traffic
environment. The image shows various objects,
including pedestrians, vehicles and traffic-related
elements, accurately detected and highlighted with
bounding boxes. The detection performance
demonstrates the model’s capability to identify multiple
small and distant objects within a complex, dynamic
scene. The clear labeling and precise localization of
objects such as buses, people and road signs validate the
effectiveness of the enhanced multi-scale feature
extraction and attention mechanisms, confirming the
model’s suitability for intelligent traffic surveillance and
smart city applications.

The detection performance demonstrates the model’s
capability to identify multiple small and distant objects
within a complex, dynamic scene. The clear labeling and
precise localization of objects such as buses, people and
road signs validate the effectiveness of the enhanced
multi-scale feature extraction and attention mechanisms,
confirming the model’s suitability for intelligent traffic
surveillance and smart city applications.

Fig. 8: Result anlaysis in signal

Fig. 9: Marked yolo images in traffic

Discussion
The performance evaluation of the proposed YOLO-

MSM-SCAM model clearly highlights its effectiveness
in improving tiny object detection compared to existing
YOLO-based architectures and other state-of-the-art
detectors. The integration of the Multi-Scale Module
(MSM) and the Spatial-Channel Attention Mechanism
(SCAM) proved to be pivotal enhancements, as
demonstrated by the experimental results on the PKLot
dataset.

The YOLO-MSM-SCAM model achieved a precision
of 96.34. The SCAM module further enhanced the
detection quality by refining feature maps through
dynamic spatial and channel-wise attention. This
selective focus mechanism improved the model’s ability
to highlight important regions while suppressing
irrelevant background features, thereby contributing to
the notable boost in mAP@0.5:0.95. Notably, the
YOLO-MSM model (without SCAM) already achieved
considerable performance gains (precision 91.20).

Moreover, despite these structural enhancements, the
proposed model successfully preserved real-time
inference capability, maintaining low inference times
comparable to standard YOLO variants. This positions
YOLO-MSM-SCAM as a practical and scalable solution
for applications requiring both accuracy and speed, such
as automated parking systems, smart traffic surveillance
and urban mobility monitoring.

The comparison against other models like Faster R-
CNN, SSD, EfficientDet and RetinaNet further validates
the proposed framework’s efficiency. YOLO-MSM-
SCAM consistently outperformed these models across all
key metrics, confirming its robustness in handling small
object detection challenges.

In conclusion, the findings from the output results
demonstrate that the YOLO-MSM-SCAM model
delivers significant improvements in detection accuracy
and reliability for tiny objects while sustaining efficient
inference performance. Future work will explore refining
this architecture for low-power embedded environments,
extending its robustness to adverse weather and lighting
conditions and integrating advanced transformer-based
modules for further boosting small object recognition
capabilities.

Conclusion
In this study, we proposed an enhanced object

detection framework by integrating Multi-Scale Module
(MSM) and Spatial-Channel Attention Mechanism
(SCAM) into the YOLO architecture. The modifications
significantly improved the model’s capability to detect
small and complex objects while maintaining
computational efficiency. Experimental results
demonstrated that the proposed approach outperformed
conventional YOLO models and other state-of-the-art
detectors in terms of precision, recall and mean Average

http://192.168.1.15/data/13016/fig8.jpg
http://192.168.1.15/data/13016/fig8.jpg
http://192.168.1.15/data/13016/fig9.jpg
http://192.168.1.15/data/13016/fig9.jpg
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Precision (mAP). The enhanced feature extraction and
attention mechanisms contributed to better localization
accuracy and robustness in diverse scenarios.

Despite these advancements, there are still
opportunities for further improvement. Future work will
focus on optimizing the computational efficiency of the
proposed model, making it more suitable for real-time
applications in resource-constrained environments.
Additionally, exploring transformer-based architectures
and hybrid models could further enhance detection
accuracy. Another potential direction is integrating self-
supervised or semi-supervised learning techniques to
reduce dependency on large annotated datasets.

Expanding the model’s adaptability to more
challenging environments, such as adverse weather
conditions and occluded scenes, will also be a priority.
These advancements will contribute to the ongoing
evolution of object detection systems for real-world
applications.
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